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Abstract 

The Society for Automotive Engineers (SAE) recently published an Error Model Annex docu-
ment (SAE AS-5506/1) to complement the SAE Architecture Analysis & Design Language 
(AADL) standard document (SAE AS5506) with capabilities for dependability modeling. The 
purpose of this report is to (a) explain the capabilities of the Error Model Annex and (b) provide 
guidance on the use of the AADL and the error model in modeling dependability aspects of em-
bedded system architectures. The focus of the guidance is the creation of error model libraries and 
the instantiation of these error models on AADL architecture models. In that context, the report 
discusses modeling of error propagation, error filtering and masking, the interactions between 
error models and systems with operational modes, and modeling of repair activities.  
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1 Introduction 

This report aims to show how the Error Model Annex [SAE-AS5506/1 2006] standard can be 
used in conjunction with the description capabilities of the Architecture Analysis & Design Lan-
guage (AADL) standard [SAE-AS5506 2004] to add dependability-related information—such as 
fault and repair assumptions, error propagations, fault-tolerance policies, and voting—to an 
AADL architecture model. The resulting annotated model can then be used as an input to depend-
ability analyses for fault forecasting during different phases of the development cycle.  

Each dependability analysis requires specific dependability-related information from the model. 
This information may include  

• fault assumptions 

• repair assumptions 

• fault-tolerance mechanisms 

• stochastic parameters of the system (i.e., the occurrence of fault events and propagations) 

• characteristics of phases in a phased-mission system 

Depending on the analysis to be performed, the model will look different. For example, in the 
case of qualitative dependability analyses, no stochastic and timing properties are needed in the 
model. For a fault-tree analysis, repair assumptions do not need to be taken into account. 

We assume that the reader is familiar with the concepts of fault-tolerance and dependability anal-
ysis. The reader is referred to the Dependability Handbook for detailed information on these top-
ics [Arlat 1998]. This report is structured as shown in Table 1: 

Table 1: Content in this Document 

Section Description of Content 

2 Presents the scope of the AADL Error Model Annex 

3 Identifies the constructs of the AADL core language relevant to error modeling and comments on the 
level of architectural detail necessary for dependability-oriented modeling 

4 Explains mechanisms for reusing error models 

5 Shows the architecture-dependent parts of the dependability-related information (i.e., the parts that can-
not be reused across architectures) 

6 Presents hierarchic error modeling options 

7 Discusses issues related to dependability modeling for systems with operational modes 

8 Explains how you can deal with maintenance and repair in AADL models 

9 Presents the mechanisms that allow you to specify elements in the model of interest to specific depend-
ability analyses 
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2 Dependability Modeling with the Error Model Annex 

The Error Model Annex can be used to annotate the AADL model of an embedded system to sup-
port a number of the methods cited in SAE ARP4761, Guidelines and Methods for Conducting 

the Safety Assessment Process on Civil Airborne Systems and Equipment [SAE-ARP4761 1996]. 
An architecture specification containing error models may be subjected to a variety of analysis 
methods. For example, fault trees can be generated from specifications to assess safety, or Markov 
analyses can be applied to assess reliability and availability. 

The error models of low-level components typically capture the results of failure modes and ef-
fects analysis (e.g., as failure modes and effects analysis as defined in SAE ARP 4761). The error 
models of the overall system and high-level subsystems typically capture the results of system 
hazard analysis (e.g., as hazard analysis as defined in SAE ARP 4761). Figure 1 illustrates the use 
of error models at different levels of the system hierarchy. Error models can also be associated 
with connections between components to characterize any fault behavior of component interac-
tions, such as the transfer of data. 

 

Figure 1: Error Models in System Hierarchy 

The error behavior of a complete system emerges from the interactions between the individual 
component and connection error models. The system error model is a composition of the error 
models of its components where the composition is derived from the system hierarchy, the inter-
actions between components, and the shared computing platform resources. For example, a com-
ponent error model with probabilistic properties represents a stochastic automaton. The system 
error model represents the composition of the concurrent stochastic automata of the components 
in that system; it reflects error propagation between components based on the component depend-
encies in the AADL architecture model and the error management rules that are specified in error 
model annotations. Risk mitigation methods employed in embedded computer system architec-
tures to increase safety, reliability, integrity, and availability are modeled by specifying how com-

System 

Component 

Subsystem 

Capture failure modes and effects analysis model 

Capture hazards 

Capture risk mitigation architecture 
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ponents detect and mitigate errors in their subcomponents or in the components on which they 
depend.    

The Error Model Annex supports mixed-fidelity modeling by annotating system components with 
different reusable error models. Mixed-fidelity modeling makes it easier to modify architecture 
specifications and automatically regenerate safety and reliability models at different levels of fi-
delity; it also enables improved traceability between architecture specifications and the generated 
models and analysis results. 

You can define two kinds of reusable error models within an error model annex library: basic er-
ror models and derived error models. A basic error model declares a set of error states for a 
component or connection, together with error state transitions and properties to specify how the 
error state of a component changes due to error events and error propagations. For example, 
the error state of a component might change due to an internal fault, represented by an error event, 
or due to an error propagated into that component from some other component, represented by an 
error propagation.  

In a derived error model, the error state of a component may be defined in terms of the error 
states of its subcomponents. For example, a component having internal redundancy might be in an 
erroneous state only when two or more of its subcomponents are in erroneous states. In this case, 
error state transitions are not explicitly defined. 

You annotate application system components and execution platform components through error 
model annex subclauses. These subclauses specify an error model from the library to be used for 
a component and component-specific properties of the error model, such as  

• probability of occurrence of errors and error propagation 

• logical guards that determine the effects those errors and error propagations have on compo-

nent error states 

• mappings of error states and error propagations in the error model into events on event ports 

of components 

• mode transition conditions in terms of events through event ports, error states, and error prop-

agations 

You may use a basic error model as an abstraction for a given subsystem; a derived error model 
should be specified in terms of subcomponent and connection error models of that subsystem. 

It is possible to check for consistency, completeness, and traceability between the error models of 
interacting components and between the error models of components and their subcomponents. 
This monitoring capability helps ensure a globally consistent and complete error model for the 
overall architecture. It also enables an integrated approach that ensures consistency and complete-
ness between hazard analysis (HA) and failure modes and effects analysis (FMEA) and with the 
safety and reliability analyses that associate them together. 
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3 The AADL Architecture Model 

To perform dependability analyses, you can describe a system’s architecture in AADL and anno-
tate this architecture model with error models containing relevant dependability-related informa-
tion. AADL supports modeling of the embedded software system, the hardware platform, and the 
external environment as a set of interconnected application components mapped onto a set of in-
terconnected execution platform components.  

For dependability analyses, the architecture model does not need to be complete (i.e., the software 
does not need to be modeled to the level of threads and the hardware does not need to be de-
scribed in terms of memory, processors, devices, and buses):  

• The application software can be modeled using AADL system components; it can also be 

modeled to the level of partitions or that of processes and threads.  

• The hardware platform can be modeled using AADL system components, or it can be mod-

eled to the level of processors, memory, devices, and buses.  

• The component may be defined at different levels of abstraction. For example, an AADL 

model with a real-time operating system or a bus type may represent a network including pro-

tocols. These execution platform component specifications can later be refined into models 

that provide the details of the implementation.  

• Dynamic aspects of system architecture can be captured with the AADL mode concept. Dif-

ferent modes of a system or system component can represent different system configurations 

and connection topologies, as well as different sets of property values to represent changes in 

nonfunctional characteristics such as performance or fault occurrence. 

It is only necessary to model the components that are of interest in the analysis (i.e., those for 
which the behavior in the presence of faults is considered). As a result, architecture models can be 
formed at early stages in the development process, when the architecture is not completely de-
tailed. Later, they can be refined into a more detailed architecture representation for higher fidelity 
analysis. 

The scope of the dependability analysis determines the aspects of the system to be modeled in 
AADL. The model may focus on representing the computing platform and the external environ-
ment, the embedded application software system, and an embedded application deployed on a 
particular execution platform. In the last case, the binding of the application system to the execu-
tion platform is expressed in AADL through a set of binding properties. 

AADL supports the representation of end-to-end flows through the concept of a flow specifica-
tion. End-to-end flows can be analyzed in the context of partially or fully complete AADL mod-
els. This flexibility allows for flow-related analyses to increase in fidelity as the architecture mod-
el is refined. Although not explicitly referenced in the Error Model Annex standard, end-to-end 
flow specifications can identify the relevant system components needed to document critical 
flows that must be considered in a reliability, availability, or fault-tree analysis. 
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You can find detailed information about the architecture description capabilities of AADL in The 
Architecture Analysis & Design Language (AADL): An Introduction [Feiler 2006] and the AADL 
standard document [SAE-AS5506 2004]. 
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4 Reusable Error Models 

In this section, we describe how to define error models that can be applied to a number of system 
components and tailored with component-specific information (i.e., error models that are reus-
able). We also illustrate how to associate such an error model to a component and provide exam-
ples of reusable error models.  

4.1 ERROR MODEL DEFINITION 

An error model is a state machine that can be associated with an AADL component or connection 
in order to describe its behavior in terms of logical error states in the presence of faults. Error 
models can be associated with (1) hardware components (processor, memory, device, and bus), 
(2) software components (process, subprogram, data, thread, and thread group), (3) composite 
components (system), and (4) connections.  

An error model definition is divided into an error model type and an error model implementation. 
Elements declared in the error model type can be customized through component-specific proper-
ties, when an error model is associated with a component as an error model instance. Several error 
model implementations can correspond to the same error model type. Table 2 shows both an error 
model type declaration and an error model implementation declaration. 

Table 2: Error Model Definition 

error model Example1 
features 
ErrorFree: initial error state; 
Failed: error state; 
Fail, Repair: error event; 
CorruptedData: out error propagation 
 {Occurrence => fixed 0.8}; 
end Example1; 
 
error model implementation Example1.basic 
transitions 
ErrorFree-[Fail]->Failed; 
Failed-[out CorruptedData]->Failed; 
Failed-[Repair]->ErrorFree; 
properties 
Occurrence => poisson 1.0e-3 applies to Fault; 
Occurrence => poisson 1.0e-4 applies to Repair; 
end Example1.basic; 

The error model type Example1 declares error states (i.e., ErrorFree and Failed), er-
ror events (i.e., Fault and Repair), and error propagations that can affect other components 
(i.e., CorruptedData). One error state (ErrorFree) is the initial state.  

The error model implementation Example1.basic declares error transitions between 
states that are triggered by events and propagations. The error model instance is initially in 

the state ErrorFree. Due to a Fault error event, it becomes Failed. Then, after a Repair 
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error event it becomes ErrorFree again. While Failed, the component sends error propaga-
tions CorruptedData. 

Both the error model type and the implementation can declare Occurrence properties for 
error events and error propagations. Occurrence properties specify the arrival rate (the 
language keyword is poisson) or occurrence probability (language keyword is fixed) of error 
events and outgoing error propagations. For the poisson arrival rate, the Occurrence prop-

erty takes a single positive real value, which is the λ parameter in the exponential survival distri-
bution 1 – e–λt. For the fixed probability, the Occurrence property takes a single real value in 
the range [0.0, 1.0]. The Occurrence property can also have a user-defined distribution (indi-
cated by the language keyword nonstandard and the distribution name) with one or more val-
ues. The Error Model Annex standard permits the Occurrence property to have literal expres-

sions (i.e., µ, p, or 1-p). 

If both the error model type and the error model implementation declare Occurrence 
properties for a same error event or error propagation, the property value declared in the er-

ror model implementation overrides the one declared in the error model type. The value declared 
in the error model type can be seen as a default value while the value declared in the error model 
implementation can be seen as an implementation-specific value (i.e., different implementations 
corresponding to the same type can declare different values for the Occurrence property of a 

same error event or error propagation). Either of these values can be replaced by a component-
specific Occurrence value for each of the components with which the error model is associated 

(see Section 5.1). 

Observations 

• Elements declared in an error model definition can have slightly different meanings accord-
ing to the dependability analysis to be performed. For example, a state can represent a failure 
mode identified in an FMEA analysis or a hazardous state identified in a hazard analysis. 

• Although called error state, states can represent error-free states as well as error states.  

• Although called an error event, this logical event may represent a repair event as well 

as a fault event. 

• Some analyses do not involve probabilistic dependability measures; therefore, they do not 
require the definition of occurrence properties (i.e., Occurrence property declarations are 

optional). 

• Note that error events and error propagations are logical events that may represent transient 
faults. They are not port events that are communicated through event ports. Error events can 
be declared in error models that can be associated with any kind of AADL component and 
connection, even with components that cannot communicate events through event ports. For 
example, one can associate an error model declaring error events and propagations with a 
memory component. Although memory components are not able to send events through 
ports, error events and states of the associated error model may be observed by the system; 
they may be mapped into port events (Guard_Event) and may specify a condition for 
transition to a different operational mode (Guard_Transition). 
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4.2 ERROR MODEL ANNEX LIBRARIES 

Error model definitions like the one shown in Table 2 are meant to be reusable. They are defined 
as error model annex libraries separately from AADL component types and component imple-
mentations.  

An error model annex library is declared as shown in Table 3. Several error model definitions are 
declared between the constructs annex Error_Model {** and **};. 

Table 3: Error Model Annex Library 

package My_ErrorModels 
public 
annex Error_Model {** 
error model Example1 
… 
end Example1; 
 
error model implementation Example1.basic 
… 
end Example1.basic; 
 
error model Example2 
… 
end Example2; 
 
error model implementation Example1.basic 
… 
end Example2.basic; 
**}; 
end My_ErrorModels; 

Error model annex library declarations can be placed in AADL packages or in the local (anony-
mous) namespace of an AADL specification. When declared in an AADL package, an error 
model can be referenced by the package name and the error model name from within error model 
annex subclauses of any component type or component implementation. When declared in the 
local namespace, the error model can be referenced by its name and can only be referenced within 
error model annex subclauses in component types and component implementations declared in the 
same local namespace. 

Observations 

• Different error models can be defined with the same name as long as the error model defini-
tions are placed in different AADL packages. 

• The AADL standard limits each AADL package to one annex library declaration for each 
annex. Consequently, all error model definitions in a package must be placed in the error 
model annex library declaration. 

4.3 EXAMPLES OF ERROR MODEL DEFINITIONS 

This section includes some examples of error model definitions that could be placed in a library 
and then applied to and customized in AADL models. We first define a simple error model for an 
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isolated system component (i.e., a system component whose errors do not affect other components 
and that is not affected by errors of other components). In that context, we illustrate how to model 
faults and repairs as well as transient and permanent faults. We then define an error model for 
system components that propagate errors and are affected by propagated errors. 

4.3.1 Fault and Repair Models for an Isolated Component 

Table 4 shows a simple two-state error model definition that models faults in components. We 
refer to it as a fault model. It declares two error states, ErrorFree and Failed, and one error 
event, Fail. This error event triggers a transition between the two states. This error model defini-

tion does not declare any propagation, so it cannot influence the behavior of any components that 
interact with the component to which it is associated.  

This fault model definition is simple for three reasons:  

1. It takes failure into account.  

2. The behavior of any component in the presence of faults can be described in terms of the 
ErrorFree and Failed states.  

3. It declares a literal Occurrence property value for events that represent faults, which can 

be tailored for each component. 

Table 4: Fault Model Definition for Isolated Component 

 
error model TwoStateFault 
features 
ErrorFree: initial error state; 
Failed: error state; 
Fail: error event {Occurrence => poisson lambda};  
end TwoStateFault; 
 
error model implementation TwoStateFault.general 
transitions 
ErrorFree-[Fail]->Failed; 
end TwoStateFault.general; 

 

ErrorFree Fail 

Fail: lambda 
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This error model can be extended to include repair behavior as a fault and repair model. For this 
model, we add an event to represent that a component can repair itself or be repaired. This repair 
event is then used to specify a transition from the Failed to the ErrorFree state. A fault and 

repair model is illustrated in Table 5. 

Table 5: Fault and Repair Model Definition for Isolated Component 

 
error model TwoStateFaultRepair 
features 
ErrorFree: initial error state; 
Failed: error state; 
Fail: error event {Occurrence => poisson lambda};  
Repair: error event {Occurrence => poisson mu}; 
end TwoStateFaultRepair; 
 
error model implementation TwoStateFaultRepair.general 
transitions 
ErrorFree-[Fail]->Failed; 
Failed-[Repair]->ErrorFree; 
end TwoStateFaultRepair.general; 

 

Observations 

• Fault models can be used to represent fault information in dependency analyses that focus on 
faults, such as a fault tree analysis. The state machine represented by error states and error 
state transitions typically is without cycles (i.e., error events do not cause the error model to 
return to an error-free state). This allows the error model to be translated into fault trees. 

• Fault and repair models can be used on system components that permit repair during the life 
of the system. Note that the state machine represented by error states and error state transi-
tions is cyclical due to the fact that repair events may return the error model state to an error-
free state. Fault tree analysis can still be performed, because the cycles of this state machine 
can be broken by distinguishing between fault events and repair events. To distinguish be-
tween event types, the error event should be tagged with a property (to indicate whether it is 
a fault or repair event) that can be interpreted by analysis tools. 

ErrorFree Fail 

Fail: lambda 

Repair: mu 
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4.3.2 Modeling Transient and Permanent Faults 

Components, in particular hardware components, exhibit transient and permanent faults. Initially 
a component is in an ErrorFree state. Faults are activated with a specified rate, lh. A fault is 
permanent with a given probability (ph) and temporary with the complementary probability (1-
ph). Errors caused by temporary faults disappear after a short period of time (dh). These behav-

iors are illustrated in Table 6. 

Table 6: Fault Model with Transient and Permanent Faults 

 
error model TransientPermanent 
features  
ErrorFree: initial error state; 
Activation_Fault, Transient_Error, Permanent_Error: error state; 
Fault: error event {Occurrence => poisson lh}; 
Permanent_Fault: error event {Occurrence => fixed ph}; 
Transient_Fault: error event {Occurrence => fixed 1-ph};  
Repair_Transient: error event {Occurrence => poisson dh};  
end TransientPermanent; 
 
error model implementation TransientPermanent.general 
transitions 
ErrorFree-[Fault] -> Activation_Fault; 
Activation_Fault-[Transient_Fault] -> Transient_Error; 
Activation_Fault-[Permanent_Fault] -> Permanent_Error; 
Transient_Error -[Repair_Transient] -> ErrorFree; 
end TransientPermanent.general; 
 

Observations 

• We introduced an Activation_Fault state that allows the specification of a probability 

of fault occurrence separately from the probability that the fault is a permanent versus a tran-
sient fault. The same model can be specified without that intermediate state, when the mod-
eler specifies the occurrences of the permanent and transient faults as separate probabilities. 

• We modeled the transient fault as persisting for a short period of time, reflected in the 
Transient_Error state and the transitions between it and the ErrorFree state. If the 

modeler cares to model only the occurrence of a transient error, not its duration, the 
Transient_Error can be eliminated, and a transition can be defined from the 
ErrorFree state to itself. 

ErrorFree Activation_Fault 

Fault: lh 

Repair_Transient: dh 

Transient_Error 

Permanent_Error 

Permanent_Fault: ph 

Transient_Fault: 1-ph 
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4.3.3 Modeling Error Propagation  

In many systems, failing components affect other components, because the components interact or 
one component is an execution platform resource that an application component is bound to for 
execution. Impact dependency information exists in an AADL model (see Section 5.2) and is used 
when the modeler specifies how errors are propagated and how propagated errors are handled for 
a system component (see Section 5.3).  

In this section, we demonstrate how an error model shows that a component can propagate errors 
to other components and be affected by errors propagated from other components through error 
propagations (see Table 7). The error propagation property enhances the error model definition 
shown in Table 4 on page 9 by declaring error propagations and referring to them in error state 
transitions. The property declares outgoing and incoming propagations through an in out prop-
agation declaration. The in out propagation declaration is a shorthand for declaring an in 
propagation and an out propagation with the same name. 

An error propagation out of a component is specified with an out error propagation declaration. 
An out error propagation occurs spontaneously and randomly according to the specified occur-

rence probability, when it is named in an error state transition and the current error model state of 
the component is the origin of the transition. 

An in error propagation indicates that a component knows the propagations coming from other 
components by the specified name. The mapping of out error propagations of one component to 
an in error propagation of an impacted component is determined by name matching or explicitly 
specified as propagation guards for specific system components (see Section 5). The in propaga-

tion can be named in an error state transition to indicate that any error propagated from another 
component results in a transition to the destination state of that transition declaration. 

In Table 7, we can assume that a component failure influences the behavior of components that 
depend on it. We make this action visible through the error propagation FailVisible that oc-
curs with a given probability p. The Occurrence property only applies to the FailVisible 
out propagation. In propagations are the consequences of out propagations from other compo-

nents; therefore, they do not need Occurrence properties.  

The two supplementary transitions declared in the error model implementation specify 

respectively that  

1. If the component is in the state ErrorFree and receives a FailedVisible in propaga-

tion, it goes to the state Failed. 

2. The component remains in the state Failed when propagating out the FailedVisible 

propagation. 
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Table 7: Error Model Definition for Component with Error Propagation 

 
error model dependent 
features 
ErrorFree: initial error state; 
Failed: error state; 
Fail: error event {Occurrence => poisson lambda};  
Repair: error event {Occurrence => poisson mu}; 
FailedVisible: in out error propagation {Occurrence => fixed p}; 
end dependent; 
 
error model implementation dependent.general 
transitions 
ErrorFree-[Fail]->Failed; 
Failed-[Repair]->ErrorFree; 
ErrorFree-[in FailedVisible]->Failed; 
Failed-[out FailedVisible]->Failed; 
end dependent.general; 

Table 8 shows an error model that models components that can observe failure of other compo-
nents but their error state is not affected by error propagation.  A component may fail and can be 
restarted to regain its ErrorFree state. Out propagations are used to notify when the compo-

nent fails and when it is restarted. 

ErrorFree Failed 

Fail: lambda 

Repair: mu 

FailVisible 

FailVisible: p 
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Table 8: Error Model Definition with Error Observation 

 
error model independent 
features 
ErrorFree: initial error state; 
Failed: error state; 
Fail: error event {Occurrence => poisson lambda};  
FailedVisible: out error propagation {Occurrence => fixed p}; 
IAmRestarted: out error propagation (Occurrence => fixed l); 
end independent; 
 
error model implementation independent.general 
transitions 
ErrorFree-[Fail]->Failed; 
Failed-[out IAmRestarted]->ErrorFree; 
Failed-[out FailedVisible]->Failed; 
end independent.general; 

Observations 

• In the models shown in Table 7 and Table 8, the Fail error event shows that a fault occurs 
in a component and is recognized as error. By defining a separate outgoing error 
propagation, we can represent that the error may not always be observed by another 

component or may be observed with a delay. We indicate those situations through an appro-
priate Occurrence property value of the error propagation.  

• An error propagation reports an error state to other components. If their error states 
are affected, the other components will have a corresponding in propagation. Alternatively, 
those components may observe the out propagation through guards and take action based 

on the condition of the guard. (See Sections 5.4 and 5.5 for information about guards.) 

• If the component fault is always and immediately visible to other components (i.e., the prob-
ability of occurrence of the propagation is 1), we could choose to declare Fail as an 
error propagation instead of an error event. However, the resulting error model 

would be less reusable because it includes an assumption that the failure is always visible.  

• In general, the error state of a component is made visible to other components by declaring 
an error state transition that triggers an error propagation by naming an out propaga-

tion and has the same source and destination states (i.e., the propagation is sent out of the 
component but the component itself does not move to a different state). Figure 2 shows this 
mechanism. When the component is in StateA, it sends out an I_Am_In_State_A 
propagation and returns to StateA. It is noteworthy that the state is only visible if the out 
propagation occurs. If the out propagation occurs with a probability different from 1, the 

state may not be always visible. 

ErrorFree Failed 

Fail: lambda 

FailVisible: p 

IAmRestarted: l 
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Figure 2: State Visible from Outside 

The error model definition in Table 7 on page 13 can be considered to be more practical than the 
one in Table 4 on page 9, because it assumes that the AADL component to which it is associated 
interacts with other AADL components. The error model definition in Table 7 is general enough 
to be applied to any AADL component.  

We can represent a more realistic behavior in the presence of faults by distinguishing different 
kinds of faults and consequences, as well as error detection mechanisms. The specification of an 
error model definition depends directly on the fault and repair assumptions considered in a given 
system and operational scenario. In the two following sections, we present error model definitions 
intended to describe the behavior of hardware and software components, respectively. 

4.3.4 General Error Model for Hardware Components 

In Figure 3, we define a general error model for hardware components. The behavior of the hard-
ware component in the presence of faults is as follows: 

1. Initially, the component is in HW_ErrorFree state.  

2. Hardware faults (error event HW_Fault) are activated with a specified rate (lh) resulting in 
a transition to the HW_Activation_Fault state. 

3. The fault is either permanent (error event HW_Perm_Fault), with a given probability (ph) 
triggering a transition to the HW_Permanent_Error state, or transient (error event 
HW_Trans_Fault), with the complementary probability (1-ph) triggering a transition to 
the HW_Transient_Error state.  

4. The error caused by a permanent fault may be detected after some time (th), represented in 
Figure 3 as a transition triggered by error event HW_Detection_Action to the 
HW_Detection_Action_End state.  

5. An error caused by a permanent fault is either detected (HW_Perm_Fault_Detect) with 
a given probability (dh) or not detected (HW_Perm_Fault_Non_Detect) with a prob-
ability (1-dh).  

− If the error is detected, the hardware component is repaired as represented by the 
HW_In_Repair state.  

− If the error is not detected (represented by the HW_Error_Non_Detect state), the 
failure is perceived after a certain amount of time (fph). This behavior is shown as error 
event HW_Failure_Perceived and triggers a transition the HW_In_Repair state, 

after which the hardware component is repaired. 

StateA 

Out I_Am_In_StateA 
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6. The component repair from a permanent fault takes some time (muh), with a transition trig-
gered by error event HW_Repair_Perm to the HW_ErrorFree state. 

7. An error caused by a transient fault disappears after a short period of time (tfh). This be-
havior is shown as a transition triggered by error event HW_Repair_Trans to the 
HW_ErrorFree state. 

 

Figure 3: General Hardware Component Error Model 

Some of the hardware states may influence other components of the architecture. Therefore, they 
must be made visible to the outside through outgoing error propagations (shown in Figure 3 as 
dashed lines with arrows). We assume that this influence exists for   

• the transient error state 

The transient error state is observed by other components after a certain amount of time (qh) 
as represented by the outgoing error propagation HW_Transient.   

• the state corresponding to a nondetected error 

The nondetected error state is observed by other components after a certain amount of time 
(rh) as represented by the outgoing error propagation HW_Perm_Non_Detect.   

• the state where the hardware component needs repair 

The state representing a hardware component needing repair is observed by other compo-
nents after a certain amount of time (sh) as represented by the outgoing error propagation 
HW_Failed. 

HW_Perm_Non_Detect: rh 

HW_Transient: qh 

HW_ErrorFree HW_Activation_Fault 

HW_Fault: lh 

HW_Repair_Trans: tfh 
HW_Transient_Error 

HW_Permanent_Error 

HW_Perm_Fault: ph 

HW_Trans_Fault: 1-ph 

HW_In_Repair 

HW_Detection_Action_End 

HW_Error_Non_Detect 

HW_Detection_Action: th 
HW_Perm_Fault_Detect: dh 

HW_Perm_Fault_Non_Detect: 1-dh 

HW_Failure_Perceived: fph 

HW_Repair_Perm: muh 

HW_Failed: sh 



 

 SOFTWARE ENGINEERING INSTITUTE | 17 

Table 9 shows the error model definition corresponding to the specification depicted in Figure 3. 
Notice that we used the HW prefix for all error states, events, and propagations in order to ensure 

the readability of the model when several error models are associated with different system com-
ponents. Also, propagation names are important, because in and out propagations declared in 

error model instances associated with interacting components are matched through their names or 
are named in guard specifications. 

Table 9: Error Model Definition for a Hardware Component 

error model forHardware 
features  
HW_ErrorFree: initial error state; 
HW_Activation_Fault, HW_Transient_Error, HW_Permanent_Error, 
HW_Detection_Action_End, HW_Error_Non_Detect, HW_In_Repair: error 
state; 
HW_Fault: error event {Occurrence => poisson lh}; 
HW_Perm_Fault: error event {Occurrence => fixed ph}; 
HW_Trans_Fault: error event {Occurrence => fixed 1-ph};  
HW_Detection_Action: error event {Occurrence => poisson th}; 
HW_Failure_Perceived: error event {Occurrence => poisson fph}; 
HW_Perm_Fault_Detect: error event {Occurrence => fixed dh};  
HW_Perm_Fault_Non_Detect: error event {Occurrence => fixed 1-dh};  
HW_Repair_Trans: error event {Occurrence => poisson tfh};  
HW_Repair_Perm: error event {Occurrence => poisson muh}; 
HW_Transient: out error propagation {Occurrence => fixed qh};  
HW_Perm_Non_Detect: out error propagation {Occurrence=> fixed rh};  
HW_Failed: out error propagation {Occurrence => fixed sh};end 
forHardware; 
 
error model implementation forHardware.general 
transitions 
HW_ErrorFree-[HW_Fault]-> HW_Activation_Fault; 
HW_Activation_Fault-[HW_Trans_Fault]-> HW_Transient_Error; 
HW_Activation_Fault-[HW_Perm_Fault]-> HW_Permanent_Error; 
HW_Transient_Error -[HW_Repair_Trans]-> HW_Err_Free; 
HW_Permanent_Error-[HW_Detection_Action]-> HW_Detection_Action_End; 
HW_Detection_Action_End -[HW_Perm_Fault_Detect]-> HW_In_Repair; 
HW_Detection_Action_End-[HW_Perm_Fault_Non_Detect]-> 
HW_Error_Non_Detect; 
HW_Err_Non_Detect-[HW_Failure_Perceived]-> HW_In_Repair; 
HW_In_Repair-[HW_Repair_Perm]-> HW_ErrorFree; 
HW_Transient_Error -[out HW_Transient]-> HW_Transient_Error;  
HW_Error_Non_Detect-[out HW_Perm_Non_Detect]->  HW_Error_Non_Detect; 
HW_In_Repair-[out HW_Failed]-> HW_In_Repair; 
end forHardware.general; 

The error model definition shown in Table 9 can be associated to a hardware component and 
then customized by using particular values for Occurrence parameters. This definition models 

the fault and repair assumptions presented by Figure 3. If you want to consider additional assump-
tions, you can modify the model. For example, you can assume that errors might become visible 
outside the component when the component is in the state HW_Permanent_Err_State, even 

though the detection action has not taken place yet. 
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4.3.5 General Error Model for Software Components 

We can consider the following behavior in the presence of faults for a software component. The 
error model is shown in Figure 4. 

1. Initially, the component is in SW_ErrorFree state.  

2. Faults (shown as error event SW_Fault) are activated with a specified rate, ls, leading to 
an SW_Activation_Fault state.  

3. The error detection mechanisms need some time to detect an error (represented by the error 
event SW_Detect_Action with distribution ts), culminating in an 
SW_Detection_Action_End state.  

4. An error can be detected (shown as error event SW_Detected) with a given probability ds 
or not detected (shown as error event SW_Non_Detected) with the complementary prob-
ability 1-ds.  

5. A detected error is processed during a certain amount of time (error event SW_Handling 
with distribution pis), triggering a transition to the SW_Handling_End state. 

− If the detected error is caused by a temporary fault (error event SW_Error_Temp with 
probability 1-ps), its effects would be eliminated by the error detection mechanisms. 
Consequently, the component moves to the SW_ErrorFree state. (Note: It is assumed 

that all temporary faults can be eliminated.) 

− If the error is caused by a permanent fault (error event SW_Error_Perm with probabil-
ity ps), the software would need to be restarted (SW_In_Restart state) to eliminate 

the effects of the error.  

6. The effects of a nondetected error may disappear after a certain amount of time (error event 
SW_Non_Detected_Disappear with distribution dis) or may be perceived after a cer-
tain amount of time (error event SW_Non_Detected_Perceived with distribution 
pcs). 

7. After recovery from a detected error due to a permanent fault or from a nondetected and per-
ceived error, restart takes some time (error event SW_Restart with distribution vs).  

8. Other components may observe the malfunctioning of the software component after a certain 
amount of time, once the SW_In_Restart state is entered. This behavior is shown as an 
outgoing error propagation SW_Failed.  
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Figure 4: General Software Component Error Model 

Table 10 shows the error model definition corresponding to the specification illustrated by Figure 
4. As we did for the hardware error model definition, we tagged all states, events, and propaga-
tions with an SW prefix. 

SW_ErrorFree 

SW_Activation_Fault 

SW_ Error_Detected 

SW_In_Restart 

SW_Detection_Action_End 

SW_Error_Non_Detected 

SW_Detect_Action: ts 

SW_Non_Detected_Perceived: pcs 

SW_Non_Detected: 1-ds 

SW_Error_Temp: 1-ps 

SW_Restart: vs 

SW_Failed: ps 

SW_Non_Detected_Disappear: dis 

SW_Detected: ds 

SW_ Handling_End 

SW_Error_Perm: ps 

SW_Handling: pis 

SW_Fault: ls 
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Table 10: Error Model for Software Component 

error model forSoftware 
features  
SW_ErrorFree: initial error state; 
SW_Activation_Fault, SW_Detection_Action_End, SW_Error_Non_Detected, 
SW_Error_Detected, SW_Handling_End, SW_In_Restart: error state; 
SW_Fault: error event {Occurrence => poisson ls}; 
SW_Detect_Action: error event {Occurrence => poisson ts}; 
SW_Detected: error event {Occurrence => fixed ds}; 
SW_Non_Detected: error event {Occurrence => fixed 1-ds}; 
SW_Non_Detected_Disappear: error event {Occurrence => poisson dis}; 
SW_Non_Detected_Perceived: error event {Occurrence => poisson pcs}; 
SW_Handling: error event {Occurrence => poisson pis}; 
SW_Error_Temp: error event {Occurrence => fixed 1-ps}; 
SW_Error_Perm: error event {Occurrence => fixed ps}; 
SW_Restart: error event {Occurrence => poisson vs}; 
SW_Failed: out error propagation {Occurrence => fixed ps}; 
end forSoftware; 
 
error model implementation forSoftware.general 
transitions 
SW_ErrorFree-[SW_Fault]-> SW_Activation_Fault; 
SW_Activation_Fault-[SW_Detect_Action]-> SW_Detection_Action_End; 
SW_Detection_Action_End -[SW_Detected]-> SW_Error_Detected; 
SW_Detection_Action_End -[SW_Non_Detected]-> SW_Error_Non_Detected; 
SW_Error_Non_Detected-[SW_Non_Detected_Disappear]->SW_ErrorFree; 
SW_Error_Non_Detected-[SW_Non_Detected_Perceived]-
>SW_In_Restart;SW_Error_Detected-[SW_Handling]-> SW_Handling_End; 
SW_Handling_End -[SW_Error_Temp]->SW_ErrorFree; 
SW_Handling_End -[SW_Error_Perm]-> SW_In_Restart; 
SW_In_Restart-[SW_Restart]-> SW_ErrorFree; 
SW_In_Restart-[out SW_Failed]-> SW_In_Restart; 
end forSoftware.general; 

4.3.6 Comparison of General Error Models for Hardware and Software Components 

In the error model definitions shown in Table 9 and Table 10, we did not declare any in 
propagations because the matching between in and out propagations is done by matching 
names. Thus, we have to consider the architecture environment in order to choose names for in 

propagations. Section 5.1 shows how propagations are matched based on the AADL architecture 
model. 

In the presence of faults, the error models for hardware and software components behave differ-
ently, as Table 11 shows. 

Table 11: Error Model Handling Behavior 

Aspect Hardware Component Error Model Software Component Error Model 

The point at which faults are 
distinguished 

Temporary and permanent faults are 
distinguished immediately following the 
fault activation during error handling.  

Temporary and permanent faults are 
distinguished just prior to repair. 

The result of permanent faults 
and perceived failures 

Repair Restart 
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5 System Architectures and Error Models 

Using AADL, you can model systems as  

• a hierarchical collection of interacting application system components  

• a set of computing platform components  

• a set of device components that represent the external environment 

The application components are bound to the computing platform. Device components are logi-
cally connected to application components and physically connected to computing platform com-
ponents. 

Error models can be associated with application components, computing platform components, 
and device components, as well as with the connections between them. An error model associated 
with a component can be customized by setting component-specific values for the arrival rate or 
probability of occurrence for error events and error propagations declared in the error model type. 

Interactions between the error models of different components are determined by interactions be-
tween components in the architecture model (i.e., connections and bindings). Out propagations 
are sent out of a component through all features connecting it to other components. Thus, out 
propagations have an effect on any receiving component that declares an in propagation with the 

same name.  

You might need to model the handling of error propagations from multiple sources. In that case, 
you can use propagation filtering through voting mechanisms to control error propagations, which 
can be modeled by specifying filtering and masking conditions for propagations in an error model 
to a component. 

In this section, we describe 

1. how error models can be associated with components (Section 5.1) 

2. the component dependencies through which errors can be propagated (Section 5.2)  

3. error propagation across components in the context of a simple system model (Section 5.3)  

4. the mechanisms to model masking and filtering of error propagations (Sections 5.4 and 5.5) 

5.1 ASSOCIATION OF ERROR MODEL INSTANCES 

You can choose an error model definition and associate an instance of it with an AADL compo-
nent. Error model instances are declared for system components or connections through the 
Model property in an error model annex subclause, as shown in Table 12. The Model property 

names the error model implementation to be used. If the error model definition is in a different 
package than the component, the package identifier precedes the name of the error model. The 
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error model is associated with any component that is an instance of the component implementa-
tion containing the Model property. 

The Model property also allows you to define a new error model without placing it in an error 
model annex library. However, this option is not recommended, because the error model would 
not be reusable (i.e., it cannot be instantiated anywhere else). 

You might define component-specific Occurrence properties for events and outgoing propaga-
tions declared in the error model type definition through the applies to error clause. This 
clause allows you to customize error models (i.e., to specify component-specific Occurrence 

properties for the same error model associated with several different components). In Table 12, 
we specify that computer.personal propagates corrupted data with a higher probability than 

the default specified as part of the error model type definition declared in the library. The 
applies to error clause associates a component implementation-specific Occurrence prop-

erty value with the error event CorruptedData. 

Table 12: Error Model Instance for Component Implementation 

system computer 
end computer; 
 
system implementation computer.personal 
annex Error_Model {** 
 Model => My_ErrorModels::Example1.basic;  
 Occurrence => fixed 0.9 applies to error CorruptedData; 
**}; 
end computer.personal; 

Error model property values can also be specified for specific instantiations of components (sub-
component declarations) and connections (see Table 13).  The applies to clause is used with 
a Model property to specify an error model instance for the CPU subcomponent. The applies 
to clause may specify a path to a subcomponent or connection (i.e., a dot-separated sequence of 

subcomponent names ending with a subcomponent or connection name to identify a component or 
connection recursively contained in the component implementation).  

Table 13: Error Model Instance for Subcomponent 

system computer 
end computer; 
 
system implementation computer.personal 
subcomponents 
  CPU: processor Intel.DualCore; 
  RAM: memory SDRAM; 
  FSB: bus FrontSideBus; 
annex Error_Model {** 
      Model => My_ErrorModels::Example1.basic applies to CPU; 
 Occurrence => fixed 0.9 applies to error CPU.CorruptedData; 
**}; 
end computer.personal; 

Similarly, the applies to error clause may specify a path to an error model feature of a sub-

component or connection (i.e., a dot-separated sequence of subcomponent names ending with a 
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subcomponent or connection name and followed by the error model feature name).  Table 13 
shows the Occurrence property being associated with the CorruptedData error propaga-
tion of the CPU subcomponent. 

Observations 

• A component-specific Occurrence property value overrides values declared in the error 

model definition (type and implementation). 

• Similarly, the applies to error clause can be used to declare all component-specific 
Occurrence property values in the error model annex subclause of the system 
implementation. Thus, component-specific and connection-specific error model in-

formation can be placed with either each component declaration or the root component of 
the system. 

5.2 ERROR PROPAGATIONS BETWEEN COMPONENTS OF THE SYSTEM 

Propagation of errors between components is determined by their interdependencies. Those de-
pendencies are defined as dependency rules in the AADL architecture model and fall into four 
categories (see Section 5.2.1). A second set of rules, defined as inheritance rules, determine 
propagations when a component or connection does not have an error model (see Section 5.2.2). 

5.2.1 Dependency Rules for Propagations 

The first category of dependencies is Shared Hardware Dependencies; the rules in this category 
are due to the fact that application software components execute on hardware (see Table 14). The 
binding of the application components and connections to the execution platform components is 
specified through Actual_Processor_Binding, Actual_Memory_Binding, and 
Actual_Connection_Binding properties that indicate the processor, memory, bus, and 

device that application components and connections are bound to.  

Similarly, the binding of a server subprogram call is specified through an 
Actual_Subprogam_Call_Binding property and is treated as a connection in the depend-

ency rules shown in (i.e., the remote call can be affected by the hardware over which the call is 
routed). 
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Table 14: Shared Hardware Dependency Rules for Propagations 

Rule No. Propagations may occur from Propagations may occur to 

D-1 Processor component Every thread bound to that processor 

D-2 Processor component Every connection routed through that processor 

D-3 Memory component Every software component bound to that memory  

D-4 Memory component Every connection routed through that memory 

D-5 Bus component Every connection routed through that bus 

D-6 Device component Every connection routed through that device 

The second category of dependencies is Application Interaction Dependencies. The rules in this 
category (see Table 15) are due to the fact that application components interact with each other 
through port-based communication (data ports, event ports, event data ports, and their respective 
connections), through access to shared data (provides and requires data access), and through calls 
on services provided by another component (server subprogram call bindings expressed through a 
Actual_Subprogam_Call property). 

Table 15: Application Interaction Dependency Rules for Propagations 

Rule No. Propagations may occur from Propagations may occur to 

D-7 Application component Each of the data components it has access to through 
provides and requires data access declarations 

D-8 Shared component All components that access it to through provides and 
requires data access declarations1 

D-9 Application component Every connection from any of its out ports 

D-10 Connection Every component having an in port to which it connects2 

D-11 Application component Any component via its outgoing connections 

D-12 Client subprogram Every server subprogram to which a call is bound 

D-13 Server subprogram Every client whose calls are bound to that server 

The third category of dependencies is Hardware Interaction Dependencies; the rules in this cat-
egory are due to the fact that execution platform components are connected to each other through 
shared access to buses (see Table 16). This is expressed in an AADL model by requires and pro-
vides bus access declarations and connections. 

 

1  As a consequence of rules D-7 and D-8, an application component can affect any component with which it shares 
access to a data component. If read and write access properties are specified for data access, the flow of infor-
mation can be taken into consideration in determining the impact. 

2  As a result of rules D-9 and D-10, an application component can affect any connected component through its 
outgoing connections. 



 

 SOFTWARE ENGINEERING INSTITUTE | 25 

Table 16:  Hardware Interaction Dependency Rules for Propagations 

Rule No. Propagations may occur from Propagations may occur to 

D-14 Component Each bus that is accessed by a component through a bus 
access connection 

D-15 Bus Each component that accesses the bus through a bus ac-
cess connection 

As shown in Table 17, the fourth category of dependency rules addresses special cases in system 
architecture.  

Table 17:  Dependency Rules for Propagations to Address Special Cases 

Rule No. Propagations may occur from Propagations may occur to 

D-16 Subcomponent Every other subcomponent of the same process 

D-17 Process Every other process that is bound to any common proces-
sor or memory—except for processes that are partitioned 
from each other on all common resources 

D-18 Connection Every other connection that is routed through any common 
bus, processor, or memory—except for connections that are 
partitioned from each other on all common resources 

D-19 Event connection Every mode transition that is labeled with an in event port 

that is a destination of that connection 

Figure 5 illustrates propagation between error model instances based on application component 
interactions and execution platform bindings. The upper portion of the figure shows two compo-
nents (A and B) connected by a port connection. Both the components and the connection have an 
error model instances. Error propagation occurs in the direction of the port connection flow. The 
lower portion of the figure illustrates that processors and the buses have error model instances as 
well. Error propagation can occur between these hardware components due to the bus connec-
tivity. Finally, as the upward pointing arrows in Figure 5 show, error propagation can occur be-
tween the hardware and the application components and connections, due to their binding to the 
execution platform. 

 
Figure 5: Execution Platform and Applications Error Propagation 
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5.2.2 Inheritance Rules for Propagations 

A set of rules defines end-to-end error propagations (from one component error model to another 
one). These rules are designed to recognize that some AADL components will not have error 
model instances in a given architecture. Let us assume that a processor has an error model that 
declares out propagations but the threads bound to it do not have error model instances. In this 
case, no error model instance would be able to process those propagations. The set of inheritance 
rules for error propagation is shown in Table 18. 

Table 18: Inheritance Rules for Error Propagation 

Rule No. Inheritance Rule Text 

I-1 If the dependency rules define error propagations out of a component that does not have an associ-
ated error model but does have subcomponents with error models, then error propagations occur 
out of each subcomponent error model.  

Thus, where a component does not have an error model but its subcomponents do, error propaga-
tion occurs out of the subcomponents’ error models and follows the dependency rules of the compo-
nent. 

I-2 If the dependency rules define error propagations out of a component that does not have an associ-
ated error model but does have a hierarchically containing component with an associated error 
model, then error propagations occur out of the error model associated with this containing compo-
nent.  

Thus, where a component does not have an error model but its parent does, error propagation oc-
curs out of the parent error model. 

I-3 If the dependency rules define error propagations in to a component that does not have an associ-
ated error model but does have subcomponents with error models, then error propagations occur 
into each subcomponent error model. 

Thus, where a component does not have an error model but its subcomponents do, error propaga-
tion is passed on to the error models of the subcomponents. 

I-4 If the dependency rules define error propagations in to a component that does not have an associ-
ated error model but does have a hierarchically containing component with an associated error 
model, then error propagations occur into the error model associated with this containing compo-
nent.  

Thus, where a component does not have an error model but its parent does, error propagation is 
handled by the parent error model. 

I-5 If the dependency rules define error propagations in to a semantic connection, then propagations 
occur to all ultimate destinations of that connection.  

Thus, where a connection does not have an error model, error propagation is passed from the com-
ponent that is the origin of the connection to the component that is the destination. 

I-6 If the dependency rules define error propagations in to a shared data component, then propagations 
occur to all other components that also share access to that data component. 

I-7 Errors never propagate from an error model instance to itself. 
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5.3 ERROR PROPAGATION ACROSS ERROR MODELS 

Let us assume that we have the following AADL architecture model: two system components are 
connected through a unidirectional data port connection that goes from Component1 to 
Component2, as shown in Figure 6. We assume that the behavior of Component2 depends on 
that of Component1, because Component2 receives data from Component1. We also as-

sume that the connection is perfect (i.e., it never fails). We associate error models to 
Component1 and Component2, choosing to associate the same generic error model to both 
components, dependent.general as introduced in Table 7 on page 13. 

 

Figure 6: End-to-End Propagation 

We can apply the dependency and inheritance rules from Sections 5.2.1 and 5.2.2 to the AADL 
model of Figure 6. Specifically, rules D-9, D-10, and I-5 apply to this architecture. Component1 

can propagate errors into the connection, and the connection can propagate errors into 
Component2. Also, propagations that go into a connection affect the ultimate destination of that 

connection if the connection itself does not have an error model instance. Consequently, outgoing 
propagations defined in the error model dependent.general and associated with 
Component1 can affect the error model dependent.general associated with Compo-
nent2, as the error model dependent.general declares incoming propagations whose 

names match those of the outgoing propagations. The name matching rule does not apply if a 
Guard_In condition is defined for an incoming propagation (see Section 5.4). 

In short, due to the port connection from Component1 to Component2, errors are propagated 
from the error model of Component1 to the error model of Component2. Because port con-
nections are directional, an error cannot be propagated from Component2 to Component1 
unless there is also a port connection from Component2 to Component1—even though the 
error model of Component2 declares outgoing propagations that match incoming propagations 
in the error model of Component1.  

As shown in Table 7 on page 13, the transition triggered by the FailureVisible in propaga-
tion in the error model dependent.general associated with Component2 is a conse-
quence of the transition that triggers the out propagation FailureVisible in the error 
model dependent.general associated with Component1. Both transitions occur accord-
ing to the Occurrence property value of the out propagation in Component1.  

If the Occurrence property probability value is not 1, Component2 might be affected in two 
ways: (1) it might transition into the Failed state after Component1 transitions into the 

Component1 Component2

Model =>  
dependent.general 

Model =>  
dependent.general 
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Failed state when the Fail event occurs in Component1, and (2) it might not observe the 
error of Component1 (i.e., there is a certain probability that the error in Component1 does not 
propagate and thus does not affect the behavior of Component2). 

5.4 FILTERING OF INCOMING PROPAGATIONS 

Propagations coming to a component can be filtered by using a Guard_In property. In the fol-

lowing subsections, we describe the role of this property and how it is used. 

5.4.1 Role of a Guard_In Property 

A Guard_In property allows you to 

• unconditionally map the name of an incoming propagation and error state declared in a 
sender error model instance to a propagation name declared in the receiving error model 

• conditionally map an incoming set of propagations and error states into a single (or a set of) 
in propagation(s) 

• conditionally mask incoming propagations 

5.4.2 Guard_In Property Application 

A Guard_In property may be declared to apply to requires and provides data access fea-

tures, incoming ports (data, event, or event data), and server subprogram features of a component. 
As a result, the Guard_In property is evaluated when error propagations occur into a component 
through those features (e.g., through an in data port or a shared data object or when there is a 

change in the error state of a sender component). Each component feature can only have one 
Guard_In property. 

A Guard_In property consists of an ordered set of rules for incoming propagations. Each rule 
maps at least one outgoing (out or in out) propagation or error state from error models of 
connections or connected components (when clause) or an error state of the component itself to 
an incoming (in or in out) propagation; or, it specifies that the propagation or error state 

should be masked.  

This mapping is illustrated in Figure 7. The Guard_In property is defined for ComponentA. 
The Guard_In rule is defined for the incoming error propagation InProp for port in1 of 
ComponentA (the outlined arrowed line in Figure 7). The rule condition is determined by exam-
ining the error states of ComponentA as well as the error states and outgoing error propagations 

of connections or connected components (shown as double-lined arrows for a component). The 
result of the guard rule can affect the error state transition if InProp is named as part of the tran-

sition condition (shown as solid arrow). 
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Figure 7: Guard_In Mapping 

In Table 19, the in_propagation_x expression refers to a name of an incoming (in or in 
out) propagation declared in the error model of the component for which the rule is being speci-
fied. The when clause represents the guard expression to be evaluated to determine whether the 

rule applies. 

Table 19: Guard_In Property Use 

Guard_In => 
  in_propagation_1 when port_name_1[out_propagation_1], 
  in_propagation_2 when port_name_2[error_state_1] 
                        and port_name_3[error_state_2], 
  mask when port_name_2[error_state_1] or  
             port_name_3[error_state_2] 

  applies to port_name_1; 

The outgoing propagation(s) or error state(s) is specified in square brackets. If a reference does 
not include a bracketed outgoing propagation or error state, the initial error state is implied. If the 
connection does not have an error model, the outgoing propagation or error state in the error 
model of the component that is the origin of the connection is referenced. The single port refer-
ence for in_propagation_1 in Table 19 represents an unconditional name mapping of the 
outgoing propagation name or error state of the origin into the in propagation name.  

The when clause can 

• reference a single incoming (in or in out) component port, requires data access, or 

server subprogram feature  

• reference to an outgoing propagation or error state in the error model of the connection 
through the feature 

− If the connection does not have an error model, the outgoing propagation or error state in 
the error model of the connected component(s) is referenced. 

• specify a condition that refers to multiple component features and an outgoing propagation 
or error state in the error model of the connection through the feature 

− This condition specifies how propagations and error states of origins of component in-
teractions are handled. The condition may represent a voting protocol to determine 
whether the propagations and error states are masked or cause an error state transition 
through the named in propagation.  

s

s 

Outprop 

Guard_In

Inprop s1 

ComponentA

Error state 

In
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• include references to error states in the component for which the Guard_In mapping is de-

fined 

− The references are included by referring to self and an error state of the component’s er-
ror model, which allows filtering or masking of propagated errors based on the error 
state of the component that receives the propagations. 

• contain the following logic operators: not, and, or, ormore, orless 

− The not operator has the highest precedence, followed by the and operator. The other 

operators have equal precedence and are evaluated from left to right in use, except where 
parentheses specify otherwise. A numeric literal appearing in an ormore or orless 

operator must be a positive integer. 

• specify others  

− The when clause of the last rule might specify others, meaning that the rule applies if 

none of the previous rules apply. 

Guard_In expressions are evaluated each time an error is propagated into a component through 

the feature for which the guard is specified. They are evaluated in the order of declaration until the 
first one is found whose Boolean error expression evaluates to TRUE. If a rule with 
in_propagation before the when clause evaluates to TRUE, the incoming propagation is 

considered to have occurred and caused a transition that names the incoming propagation. If a 
mask rule evaluates to TRUE, the propagation is suppressed and does not result in a transition 
between states for the receiving error model. If none of the guard rules evaluates to TRUE and 
there is no others clause, the specification is erroneous.  

Observations 

• The evaluation rules only require that guards be defined for those combinations of states and 
propagations that might occur for a specified system in the operational scenario being used 
for analysis.  

• The AADL standard Error Model Annex specifications allow propagation filtering to be as-
sociated with component dependencies through port connections, shared access, and server 
subprogram calls. However, it does not support filtering or masking of error propagations 
through bindings to execution platform components. 

5.4.3 Error Propagation Mappings 

A Guard_In property maps outgoing propagation or error state names of components that it 

connects with the component to incoming propagations of the error model. Table 20 shows sev-
eral examples of name mappings. In this table, it is assumed that the component connected 
through the port Sensor1 has the error model transientpermanent.general asso-
ciated, and the component connected through the port Sensor2 has an error model as-

sociated with two outgoing propagations named Error1 and Error2.  

The first Guard_In property (see  in Table 20) defines a mapping of an error state 
Permanent_Error in an error model associated with a connection or connected component 
that can impact the given component through Sensor1 into the incoming error propagation 
FailedVisible of the error model of the impacted component computer.personal. This 
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guard is specified to apply only to connection or component error models reachable through 
Sensor1. 

The second Guard_In property (see  in Table 20) defines a mapping of several outgoing 
propagations Error1 and Error2 in an error model into an incoming error propagation 
FailedVisible declared in the error model associated with the impacted component 
computer.personal. This guard is specified to only apply to connection or component error 
models reachable through Sensor2. 

Table 20: Error Propagation Mappings 

system computer 
features 
Sensor1: in data port; 
Sensor2: in data port; 
end computer; 
 
system implementation computer.personal 
annex Error_Model {** 
 Model => My_ErrorModels::transientpermanent.general;  
 Guard_In =>                                   
  FailedVisible when Sensor1[Permanent_Error] 
 applies to Sensor1; 
Guard_In =>                                    
  FailedVisible when Sensor2[Error1,Error2] 
 applies to Sensor2; 
 **}; 
end computer.personal; 

Observations 

Error propagation mappings can be used for several purposes. 

1. If the error models of two connected components or a component and the connection have 
error propagations with different names, the outgoing error propagation names of one model 
can be mapped to incoming error propagation names of the second model. 

2. If the error model that is the origin of an error propagation has multiple error propagations to 
distinguish between different errors but the error model of an impacted component treats all 
errors the same way, the different types of outgoing error propagations can be mapped into 
the same incoming propagation. (For example, in Table 20, see the error model connected 
through Sensor2). 

3. If the error model that is the origin of an error propagation does not have any outgoing prop-
agations (i.e., has not been designed to explicitly propagate out error information), the de-
pendent components can observe the error state of the originating component and map it into 
an incoming propagation. This is done in the example in Table 20 for the error model 
transientpermanent.general, which does not have any propagation. 

4. Assume that an impacted component has two incoming features and the components that are 
connected through these features use the same error model definition, 
dependent.general. If the impacted component wants to distinguish between errors 

propagated through each feature, a separate guard can be defined for each component feature 
that maps the FailedVisible outgoing propagation into separate incoming propagations 
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of the impacted component error model. Each of these incoming propagations can trigger a 
transition to a different error state in the impacted component error model. 

5.4.4 Error Propagation Filtering and Masking 

The Guard_In property can specify filters for error propagations from other components that 

reflect voting protocols used to determine whether the impacted component should change its cur-
rent error state. Using the same logic expressions, the Guard_In property can also specify the 

conditions under which error propagations are masked. The logic expression can name outgoing 
propagations, as well as error states of the components that can impact the given component. In 
addition, the logic expression can include conditions that reflect the current error state of the im-
pacted component. 

Table 21: Masking and Filtering of Error Propagations 

system computer 
features 
Sensor1: in data port; 
Sensor2: in data port; 
end computer; 
 
system implementation computer.personal 
annex Error_Model {** 
 Model => My_ErrorModels::dependent.general;  
 Guard_In => 
 mask when (Sensor1[FailedVisible] and Sensor2[ErrorFree]) 
  or (Sensor1[ErrorFree] and Sensor2[FailedVisible]), 
 FailedVisible when (Sensor1[FailedVisible] and 
Sensor2[FailedVisible]) 
 applies to Sensor1, Sensor2; 
 **}; 
end computer.personal; 

Table 21 shows an AADL system component that has two in ports, Sensor1 and Sensor2. 
We associate the error model dependent.general (detailed in Table 7 on page 13) with the 
component implementation. We declare a Guard_In property that applies to both in ports. We 

assume that the components connected to Sensor1 and Sensor2 both have associated error 
models dependent.general. 

The Guard_In property describes the following propagation controls:  

• When a FailedVisible propagation (declared as an out propagation in the error model 

associated with a component connected to a sensor port) comes through only one of the sen-
sor ports, that propagation is masked. As a result, it will not have an impact on the 
computer.personal component implementation.  

• When FailedVisible propagations (declared as out propagations in error models asso-

ciated with components connected to the sensor ports) come simultaneously through both 
sensor ports, a FailedVisible propagation (declared as an in propagation in the error 
model associated with the computer.personal component implementation itself) oc-
curs in the error model of the impacted component computer.personal. 
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Observations 

• The Guard_In property can refer both to states and out propagations in its logic expres-
sion. In Table 21 (right hand side of the when clause, after the or operator), ErrorFree is 
a state while FailedVisible is an out propagation.  

• The Guard_In property may reference an error state of a component that can impact an-

other component. This flexibility permits the specification of error propagations between de-
pendent components, when the error model of the origin component does not have outgoing 
propagations specified for error states. Notice that this action is equivalent to specifying a 
transition from an error state to itself with an out propagation label with an occurrence 

probability of 1 and naming the propagation in the Guard_In expression. 

• The Guard_In property can include an error state of the impacted component in the logic 

expression, allowing the definition of conditions (under which propagations affect a compo-
nent) that are dependent on the error state of the impacted component. For example, a com-
ponent may respond to propagations from other components only if the impacted component 
is in the Transient_Error state. 

5.4.5 Connection-Specific Filtering 

Different features of a component may have distinct Guard_In properties through the declara-
tion of Guard_In properties with an applies to clause to name the specific data access fea-

tures, ports (data, event, or event data), and server subprogram features of a component to which 
the Guard_In property applies. The Guard_In property of a given feature is evaluated only 
for error propagations that occur into a component through that feature (e.g., through an in data 

port or a shared data object). It is forbidden to declare several Guard_In properties for the same 
feature. This prohibition ensures that only one Guard_In property is evaluated and that logic 

rules applying to a same feature do not conflict. 

Observations 

• Distinct Guard_In properties for different component features allow different name map-

pings to be specified for different incoming propagations. 

• If distinct Guard_In properties that specify filter or masking conditions are specified for 

different features of a component, the same feature cannot be referred to in the different 
Guard_In properties. 

5.5 FILTERING OF OUTGOING PROPAGATIONS 

Error propagations out of a component can be filtered by using a Guard_Out property. The fol-

lowing subsections show the role of this property and how it is used. 

5.5.1 Role of a Guard_Out property 

A Guard_Out property allows you to specify pass-through of error propagations under the fol-

lowing conditions: 

• unconditionally pass incoming propagations from different senders as outgoing propagations 
of the error model associated with the component whose implementation contains the 
Guard_Out property 
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• conditionally pass incoming propagations or error states as outgoing propagations of the er-
ror model associated with the component whose implementation contains the Guard_Out 

property 

• conditionally mask incoming propagations from different senders 

An incoming propagation is identified by naming an incoming (in or in out) port and an out-
going (out or in out) propagation of the connection or connected component. 

5.5.2 Guard_Out Property Application 

A Guard_Out property may be declared to apply to provides data access features, outgoing 

ports (data, event, or event data), and server subprogram features of a component. The 
Guard_Out property, consequently, is evaluated when error propagations occur into a compo-
nent through the features specified in the guard condition (e.g., through an in data port or a data 

access feature or when there is an error state change in the error model associated with an origin 
error model). The Guard_Out property determines under what conditions the outgoing propaga-

tion occurs or is masked. Each component feature of the above-mentioned kinds can only have 
one Guard_Out property. 

A Guard_Out property has a similar structure to a Guard_In property. A Guard_Out prop-

erty consists of an ordered set of rules for outgoing propagations. Each rule maps error states of 
the component itself and outgoing (out or in out) propagations or error states from error mod-
els of connections or connected components (when clause) through an incoming (in or in out) 
port to an outgoing (out or in out) propagation; or, it specifies that they should be masked. 

The functioning of a Guard_Out property is illustrated in Figure 8, using the same symbols as in 

Figure 7 (on page 29). 

 

Figure 8: Guard_Out Mapping 

In Figure 8, a Guard_Out property is defined for the outgoing propagation Outprop through 
port Out1 of ComponentA. This propagation is conditional on error states of ComponentA 
and on the error state or outgoing propagation Outprop of the component connected to 
ComponentA.  

In Table 22, the out_propagation_x expression refers to a name of an out or in out 

propagation declared in the error model of the component for which the rule is being specified. 
The when clause represents the guard expression to be evaluated to determine whether the guard 

rule applies. 
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Table 22: Guard_Out Property in Use 

Guard_Out => 
  out_propagation_1 when port_name_1[out_propagation_1], 
  out_propagation_2 when port_name_2[error_state_1]  
                    and port_name_3[error_state_2], 
  mask when port_name_2[error_state_1] or 
            port_name_3[error_state_2] 
  applies to feature_Name_1; 

The when clause can  

• provide a single reference to an incoming (in or in out) component port, requires 

data access, or server subprogram feature and an outgoing propagation or error state in the 
error model of the connection through the feature 

− In this case, the when clause represents an unconditional name mapping or masking of 

the incoming propagation. 

− The outgoing propagation(s) or error state(s) are specified in square brackets, as shown 
in Table 22. If a reference does not include a bracketed outgoing propagation or error 
state, the initial error state is referred to implicitly. If the connection does not have an er-
ror model, the outgoing propagation or error state in the error model of the connected 
component(s) is referenced.  

• specify a condition that refers to multiple component features and outgoing propagations or 
error states in the error model of the connection through the features 

− If the connection does not have an error model, the outgoing propagation or error state in 
the error model of the connected component(s) is referenced. This condition describes 
the circumstances under which incoming propagations and error states are passed 
through (by the component error model) or masked. 

• include references to error states in the component for which the Guard_Out mapping is 

defined by including references to an error state of the component’s error model  

− This action allows pass-through or masking of incoming error propagations to occur 
conditional on the error state of the component. 

• contain the following logic operators: not, and, or, ormore, orless 

− The not operator has the highest precedence, followed by the and operator. The other 

operators have equal precedence and are evaluated from left to right except where paren-
theses specify otherwise. A numeric literal in an ormore or orless operator must be a 

positive integer. 

• specify others 

− The specification of others means that the rule applies if none of the previous rules 

apply. 

The Guard_Out expressions are evaluated each time an error is propagated into a component 

through the feature for which the guard is specified. They are evaluated in the order of declaration 
until the first one is found whose Boolean error expression evaluates to TRUE. If a rule with 
out_propagation before the when clauses evaluates to TRUE, the outgoing propagation is 

considered to occur and is propagated to connections or dependent components of the feature to 
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which the Guard_Out applies. If a mask rule evaluates to TRUE, the propagation is suppressed 

and does not result in a transition between states for the receiving error model. If none of the 
guard rules evaluates to TRUE, and there is no others clause, the specification is erroneous. 

Observations 

• The evaluation rules only require guards be defined just for those combinations of states and 
propagations that might occur for a specified system in the operational scenario being used 
for analysis. 

• The current AADL error model annex specification allows outgoing propagation filtering to 
be associated with component dependencies through port connections, shared access, and 
server subprogram calls. However, it does not support filtering or masking of error propaga-
tions through bindings to execution platform components. 

5.5.3 Error Propagation Pass-Through Mappings 

The Guard_Out property can specify mappings of incoming propagations or error states from 

other components to outgoing propagations of the error model of components. This pass-through 
can be specified unconditionally or dependent on the error state of the component with the 
Guard-Out property. 

Table 23 shows several examples of pass-through mappings. In these examples, it is assumed that  

• the component connected through the port Sensor1 has the error model 
TransientPermanent.general 

• the component connected through the port Sensor2 has an error model associated with two 
outgoing propagations named Error1 and Error2 

The first Guard_Out property (see  in Table 23) defines a pass-through mapping of an error 

state in a component error model into an outgoing error propagation of the error model. This 
guard is specified to only generate an outgoing propagation through port Output1. 

The second Guard_Out property (see  in Table 23) defines a mapping of several outgoing 

propagations in an error model (associated with a component that can affect the given component) 
into an outgoing error propagation of the error model of the affected component. This guard is 
specified to only generate an outgoing propagation through port Output2. 
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Table 23: Error Propagation Pass-Through Mappings 

system computer 
features 
Sensor1: in data port; 
Output1: out data port; 
Sensor2: in data port; 
Output2: out data port; 
end computer; 
 
system implementation computer.personal 
annex Error_Model {** 
 Model => My_ErrorModels::TransientPermanent.general;  
 Guard_Out =>                                   
  FailedVisible when Sensor1[Permanent_Error] 
 applies to Output1; 
Guard_Out =>                                    
  FailedVisible when Sensor2[Error1,Error2] 
      and self[Failed] 
 applies to Output2; 
 **}; 
end computer.personal; 

Observations 

Error propagation pass-through mappings can be used for several purposes: 

• A component can observe the error states of another component or incoming connection and 
map them into an outgoing error propagation. 

• A component can pass through error propagations from other components by mapping them 
into one of its own outgoing error propagations. 

• The error propagations from other components can be passed on through one, several, or all 
outgoing features of the component. In other words, the component can route its observation 
of error propagations or error states from other components as one of its own outgoing error 
propagations. 

• The error propagations from other components can be passed through when the component 
is in certain error states. In other words, pass-through can be conditional on the error state of 
the component performing the pass-through. 

• The conditions for passing through incoming propagations may be different from the condi-
tions under which the component itself handles incoming propagations. The latter conditions 
are captured in a Guard_In, whose in propagation is then named in a error state transition. 

• If the condition for handling incoming propagations by the component and for passing the 

incoming propagations through is the same, it is better to trigger the outgoing propagation 
from a component error state instead of repeating the condition in a Guard_In and the 

Guard_Out property. 
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5.5.4 Pass-Through Filtering and Masking 

The Guard_Out property can specify filters for error propagations from other components that 

reflect voting protocols used to determine whether the observed incoming propagations and error 
states should be visible to others. Using the same logic expressions, the Guard_Out property 

can also specify the conditions under which error propagations and error states are masked. The 
logic expression can name outgoing propagations and error states of the components that can af-
fect the given component. In addition, the logic expression can include conditions that reflect the 
current error state of the affected component. 

Figure 9 shows an example using the graphical AADL notation of architecture with a 
Guard_Out property on an out port. The out propagations sent through the SensorFailed 
out port of the computer.personal system implementation depend on in propagations 
arriving as inputs on the Sensor1 and Sensor2 in ports. The components connected to 

Sensor1 and Sensor2 are assumed to have error models dependent.general. 

 

Figure 9: AADL Architecture with Guard_Out Property 

Table 24 shows the AADL system component computer.personal (with its two in ports, 
Sensor1 and Sensor2, and one out port, SensorFailed). We associate the error model 

dependent.general (shown in Table 7 on page 13) with the component implementation. We 
declare a Guard_Out property that applies to the SensorFailed out port. The 

Guard_Out property describes the following propagation control. 

• When a FailedVisible propagation (declared as an out propagation in the error model 
associated with a component connected to Sensor1 or Sensor2) comes through only one 

of the sensor ports, that propagation is masked. As a result, the masked propagation will not 
affect the computer.personal component implementation.  

• When FailedVisible propagations (declared as out propagations in error model asso-
ciated with components connected to Sensor1 or Sensor2 and as in propagations in the 

error model instance associated with the computer.personal component implementa-
tion itself) come simultaneously through both sensor ports, a FailedVisible propaga-
tion (declared as an out propagation in the error model associated with the 
computer.personal component implementation itself) is sent out through the out port 

SensorFailed. 
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Table 24: Guard_Out Example 

system computer 
features 
Sensor1: in data port; 
Sensor2: in data port; 
SensorFailed: out data port; 
end computer; 
 
system implementation computer.personal 
annex Error_Model {** 
 Model => My_ErrorModels::dependent.general;  
 Guard_Out => 
 mask when (Sensor1[FailedVisible] and Sensor2[ErrorFree]) 
  or (Sensor1[ErrorFree] and Sensor2[FailedVisible]), 
 FailedVisible when (Sensor1[FailedVisible] and 
Sensor2[FailedVisible]) 
 applies to SensorFailed; 
 **}; 
end computer.personal; 

Observations 

• The Guard_Out property can refer both to states and out propagations. In Table 24, 
ErrorFree is a state while FailedVisible is an out propagation. Reference to error 

states allows us to observe component error models without outgoing propagations and con-
ditionally produce outgoing propagations. 

• The Guard_Out property can include an error state of the affected component in the logic 

expression, which allows us to define conditions under which propagations dependent on the 
error state of the impacted component actually affect a component. For example, a compo-
nent may respond only to propagations from other components if the affected component is 
in the Transient_Error state. 

• Distinct Guard_Out properties can be associated with different features of a component. 

Consequently, propagations depending on the same inputs that are sent out through different 
features can be different.  

5.6 ERROR STATE PROPAGATION 

In some dependability analysis scenarios, it is natural to think in terms of propagation of error 
states.  Propagation can be achieved in two ways:  

1. representation of guard conditions in terms of error states only  

2. interpretation of error propagations as representing inferred error states 

We will examine each modeling approach in detail. 

5.6.1 Use of Error States in Conditions 

You can restrict the conditions of Guard_In properties to refer only to error states of connection 

or connected component error models and the component’s own error states.  In other words, 
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Guard_In conditions do not refer to outgoing propagations of connections or connected compo-

nents.  

Similarly, you can restrict the Guard_Out conditions to refer only to error states of connection 

or connected component error models and the component’s own error states.  However, since out 
propagations are not named in Guard_In conditions, we have to reflect those Guard_Out con-
ditions in a different way.  Guard_Out conditions based on the component error states them-
selves become part of the Guard_In condition of the recipient component.  Guard_Out condi-

tions based on the error states of incoming connections or connected components can be mapped 
into a new Guard_In condition of the component with the Guard_Out property.  This new in 

propagation results in an error state transition, and the error state being entered is observed by the 
Guard_In condition of the recipient component. 

In summary, this modeling approach leads to error models that utilize error events, error states, 
and in error propagations but not out error propagations.  It assumes that the error state of a 

component is immediately observable by other components. 

5.6.2 Use of Inferred Error States 

The Error Model Annex standard defines inferred error states as follows:  

For each out or in out propagation defined in an error model, the inferred error states for 
that propagation are the set of error states named as a source state for any transition la-
beled with that propagation.  Note that there may be more than one inferred error state for 
an error propagation name [SAE-AS5506/1 2006]. 

This definition means that observing a propagation from another component or a connection can 
be interpreted as observing the error state that is the source of the transition triggering the propa-
gation.   

Figure 2 in on page 15 illustrates a patterned way of propagating an error state through an error 
propagation named in a transition from the error state to itself. In that case, naming the error prop-
agation in a condition is equivalent to naming the error state with the loopback transition if the 
Occurrence probability of the propagation is 1.   

Occurrence value less than one allow the model to reflect the fact that another component may 

observe the error state of a component with some delay or may not always observe the error state.  
The latter scenario is typically represented by an error state that is entered according to some dis-
tribution. The error state then has two outgoing transitions, one with fixed probability p and the 
second with fixed probability 1-p. One is labeled with an out propagation, reflecting that an 

error is observed with probability p, while the other reflects that the error state remains unob-

served.  

Figure 10 illustrates the propagation of an observed fault. Notice that the out propagation is trig-

gered by a transition from one error state to another error state.  According to the definition of the 
Error Model Annex standard, the inferred error state is the error state from which the transition 
originates. 
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Figure 10:  Observed Fault 

In summary, the inferred error state approach utilizes error events, error states, in error propaga-
tions, and out error propagations. This approach allows users to define outgoing and pass-

through error propagation conditions separately from incoming error propagation conditions. Fur-
thermore, it can capture delayed and sporadic observation of faults in other components. 

5.7 COMPARISON BETWEEN GUARD_IN AND GUARD_OUT 

Sections 5.4 and 5.5 explained how to use the propagation control properties Guard_In and 
Guard_Out. Table 25 shows the similarities and differences of these two properties from a func-

tional view and an input/output view.  

You might use a Guard_In if the decision-making (i.e., voting, filtering) layer is placed at the 
input interface of a component. A Guard_Out might be more appropriate if the decision-making 

functionality exists as a component in its own right. 

Table 25: Symmetry and Asymmetry between Guard_In and Guard_Out 

 Guard_In Guard_Out 

Functional 
View 

Applies to incoming features  

Its evaluation result has an impact on the inter-
nal behavior of the component that declares it. 

Applies to outgoing features  

Its evaluation has an impact on components 
that depend on the component that declares it. 

Input/Output 
View 

Input: propagations from the component’s 
environment 

Output: propagations to the component itself 

Input: propagations from the component’s 
environment 

Output: propagations to the component’s envi-
ronment 

 

ErrorFree Faulty 

ObservedFault

UnobservedFault 

Fault: fh 

Observed: p 

UnObserved: 1-p
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6 System Instance Error Models 

An AADL architecture model is hierarchical. The level of detail it contains depends on the stage 
of the design and development process. For example, a system may initially be modeled as a par-
tial model to the level of subsystems and later completed to the level of threads. Both partial and 
complete models can be instantiated to produce system instance models for system analysis. 

Error models can be associated with components of a system model at any level of the component 
hierarchy. For example, an error model can be associated with the root-level system component to 
represent an abstracted error model of the system instance. An instance of this error model repre-
sents the system instance error model as a finite state stochastic automaton. Similarly, error mod-
els can be associated with each of the leaf components in the system hierarchy (i.e., individual 
application threads and hardware components). In this case, the system instance error model con-
sists of the set of component error model instances and connection error model instances. The 
system instance error model represents a set of concurrent stochastic automata. 

Error models can be associated with several levels of the system hierarchy at the same time. For 
example, an error model can be associated with an application thread, an enclosing application 
(sub)system, and the system as a whole. In this case, the error model higher in the system hierar-
chy is an abstraction of the contained error models. The AADL Error Model Annex standard of-
fers two approaches for representing error model abstractions: 

1. A basic error model represents the behavior of a component and its subcomponents in the 
presence of faults as an abstraction. (The error models presented in Sections 4 and 5 are ba-
sic error models.) 

2. A derived error model represents the behavior of a component in the presence of faults as a 
function of the error states of its subcomponents. 

Sections 6.1 and 6.2 discuss these two approaches. 

6.1 ABSTRACTION WITH BASIC ERROR MODELS 

A basic error model associated with a component or connection consists of an error model type 
and implementation identified by the Model property, any component-specific tailoring with the 
Occurrence property, and component-specific error propagation filtering and masking defined 
through Guard_In and Guard_Out properties. 

A basic error model describes the behavior of a component in terms of error events intrinsic to the 
component, error states, error propagations from and to components this component interacts 
with, and error state transitions that are triggered by intrinsic error events or incoming error prop-
agations and initiate outgoing error propagations. The behavior of a component in the presence of 
faults is defined without referring to any subcomponent. Consequently, a basic error model repre-
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sents the behavior of a component or connection in the presence of faults as an abstraction inde-
pendent of subcomponent error models. 

6.1.1 When to Use Basic Error Models 

You can use a basic error model as an abstraction if an existing AADL architecture model with 
associated error models for components and connections is very detailed and requires a high level 
of processing. In those instances, a tradeoff between the accuracy and the complexity of the model 
is necessary, and some of the model’s details must be ignored to produce a lower-fidelity error 
model. The lower-fidelity error model can be achieved by associating a basic error model to a 
component containing subcomponents, so that the error models associated to the subcomponents 
are ignored by the analysis. Besides states, events, and transitions, the basic error model of a 
component includes in and out propagations that abstractly describe the actual error propaga-

tions between contained subcomponents and external component. Issues about the relationship 
between abstracted error models and higher fidelity error models are discussed in the work by 
Binns and Vestal [Binns 2004]. 

6.1.2 How to Use Basic Error Models 

If both a component and its subcomponents have associated error models, you can use the 
Model_Hierarchy property to indicate whether the enclosing basic error model should be 

considered as the abstraction and the error models associated with subcomponents should be ig-
nored by the analysis. This property allows you to annotate an AADL system model with error 
model information at different levels of the system hierarchy and choose the level of fidelity for 
analysis. Table 26 shows how to use the Model_Hierarchy property to specify that an error 

model is abstract.  

In Table 26, the system implementation computer.personal contains two subcomponents: 
hardware.nominal and software.nominal. Error models are associated with each of the 
subcomponents. An error model is also associated to computer.personal itself. It is declared 
as abstract. Thus, the analyses will ignore the error models declared for subcomponents. In 

other words, an abstract error model at a higher level of the component hierarchy abstracts the 
details of the subcomponent error models away.  

Note that the Model_Hierarchy property declaration is not mandatory, because it is implied 

by the association of a basic error model. Consequently, you have to add or remove error models 
and guard declarations in parents to change the fidelity at which models are analyzed. 
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Table 26: Abstract Error Model Specified Using Model_Hierarchy 

system implementation hardware.nominal 
annex Error_Model {** 
 Model => forHardware.general; 
 **}; 
end hardware.nominal; 
 
system implementation software.nominal 
annex Error_Model {** 
 Model => forSoftware.general; 
 **}; 
end software.nominal; 
 
system implementation computer.personal 
subcomponents 
 HW: system hardware.nominal; 
 SW: system software.nominal; 
annex Error_Model {** 
 Model => dependent.general; 
 Model_Hierarchy => abstract; **}; 
end computer.personal; 

6.2 DERIVED ERROR MODELS 

A derived error model is a component error model whose error state is determined by a derived 
state mapping of subcomponent error states and error states and connected components’ error 
propagations.  

A derived error state mapping, described in Table 27, specifies the condition under which a com-
ponent is in its error state in terms of  

• error states of subcomponents  

• error states or error propagations of connections or connected components  

Table 27: Derived State Mapping Structure 

Derived_State_Mapping => 
  ErrorFree when HW[ErrorFree] and SW[ErrorFree], 
  Failed when others; 

A derived error state mapping is illustrated in Figure 11, using the same symbols as in Figure 7 on 
page 29. The dashed double-line arrow indicates that subcomponent error states are inferred when 
an outgoing error propagation of a subcomponent is named. The inference rules are described in 
Section 6.2.2. A derived error model does not have error events or explicitly declared error state 
transitions. 
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Figure 11: Derived Error State Mapping 

6.2.1 When to Use Derived Error Models 

You can use derived error models to express a high-level view of subcomponent error behavior 
through a (possibly) smaller set of error states and outgoing propagations. This expression is ob-
tained through partitions that consist of sets of subcomponent error states that represent 

• nominal behavior 

• faulty states 

• catastrophic states  

This kind of partitioning is used in dependability evaluation tools. The report property can be 

used to identify the error state partitions of interest.  

Note that in probabilistic dependability analyses (like those based on Markov chains and Petri 
nets), it is not mandatory to describe the system in terms of derived state-mapping expressions. 
These analyses allow deriving the global states from compositions of error states of subcompo-
nents. 

6.2.2 How to Use Derived Error Models 

A derived component error model is declared through three error model properties:  

1. a Model property that identifies an error model type  

2. a Derived_State_Mapping property that defines the states of the derived error model 

as a function of  

a. subcomponent error states and outgoing propagations  

b. error states and outgoing propagations of connections  

Subcomponents 

s

s 

s 

Outprop 

Outprop

Derived State 
Map 

Component A
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c. error states and outgoing propagations of connected components of a named incoming 
component feature  

3. a Model_Hierarchy property with the value Derived 

When a component error model is declared as derived, the Model property can refer to the error 

model type or error model implementation. If it refers to an error model implementation, only the 
error model type is considered. In the error model type, only error state and outgoing error propa-
gations are considered to be part of a derived error model. The error states of the component are 
determined by evaluating the derived state-mapping logic expression.  

A derived state mapping is declared using a Derived_State_Mapping property that contains 
a set of derived state mapping rules. If a component has a Model_Hierarchy property associa-
tion of derived, a Derived_State_Mapping property must be declared for that compo-
nent. The Derived_State_Mapping property is ignored if the Model_Hierarchy prop-
erty does not have the value derived.  

A Derived_State_Mapping property consists of several state-mapping rules, one for each 
error state of the component for which the Derived_State_Mapping is defined.  

Table 28 shows how to use the Derived_State_Mapping property. The system implementa-
tion computer.personal contains two subcomponents: hardware.nominal and 
software.nominal. (Note: This architecture is the same as in Table 26 on page 44.) Error 
models are associated to subcomponents. The implementation computer.personal declares 
a Derived_State_Mapping property inside its error annex clause. This property specifies 

that the system is ErrorFree when both subcomponents are ErrorFree and Failed other-

wise. 

In the when clause of each state-mapping rule, names of subcomponents are followed by optional 

bracketed lists of error states or error propagations of the error models associated with the sub-
components. If no bracketed list follows a subcomponent name, the initial state of the subcompo-
nent is inferred. For a named error propagation, the error state is inferred to be the source error 
state for error state transitions that refer to it. 

The name of a port, data access feature, or server subprogram feature is also permitted in the 
when clause. There, the name refers to the error model associated with the connection made to 

that component feature. If there is no associated error model for a connection, this naming rule 
applies to the error model associated with the component that is the source of that connection. 

The when clause can contain the following logic operators: not, and, or, ormore, orless. 
The not operator has the highest precedence, followed by the and operator. The other operators 

have equal precedence and are evaluated from left to right except where parentheses specify oth-
erwise. A numeric literal appearing in an ormore or orless operator must be a positive inte-

ger. 
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Table 28: Derived State Mapping Property 

system implementation hardware.nominal 
annex Error_Model {** 
 Model => forHardware.general; 
 **}; 
end hardware.nominal; 
 
system implementation software.nominal 
annex Error_Model {** 
 Model => forSoftware.general; 
 **}; 
end software.nominal; 
 
system implementation computer.personal 
subcomponents 
 HW: system hardware.nominal; 
 SW: system software.nominal; 
annex Error_Model {** 
 Model => dependent.general; 
 Model_Hierarchy => derived; 
 Derived_State_Mapping => 
  ErrorFree when  
   (HW[ErrorFree] and SW[ErrorFree]), 
  Failed when others; 
 **}; 
end computer.personal; 

The when clause can contain the keyword others only in the final state-mapping rule. If no 
preceding rule is evaluated to TRUE, the final others rule (with others) is used to determine 

the current error state of the component. 

The state-mapping rules are evaluated in the order of declaration until the first when clause eva-

luates to TRUE. The error state in that rule becomes the current state of the component. If no rules 
evaluate to TRUE and there is no others clause, the specification is erroneous.  

Among the state-mapping expressions that define states of a set of components there must be no 
circular references. A circular reference could cause an error in which a subcomponent is shared 
by systems at different levels of the nesting hierarchy or in which two components communicate 
with each other and their states are defined by derived state mappings that name the features con-
necting the two components. 

Observations 

• The mechanisms of abstraction and derivation for hierarchical error models are convenient 
for enhancing the readability of the model. Where the model is too big to be processed, it 
may be necessary to abstract away error modeling details. Sometimes it may be convenient 
to use derived state-mapping expressions to make global states of the system visible. How-
ever, it is not mandatory to use these mechanisms in any model. 

• It is worth noting that, unlike basic error models, derived error models cannot have compo-
nent-specific Occurrence properties for their outgoing propagations. The occurrence 

probability of a derived outgoing propagation is determined by the error models that the 
propagation is derived from. 



48 | CMU/SEI-2007-TN-043 

7 Operational Modes and Error States 

Systems can be in various operational modes. An operational mode might represent a mission-
phased mode of operation—such as takeoff, cruise, or landing in an avionics system. An opera-
tional mode might reflect a particular fault-tolerant system configuration, such as operating the 
primary or backup variant of a dual redundant system. An individual system component might 
have multiple levels of performance, such as algorithms with different levels of precision.  

System operational modes are visible execution states of the embedded software system. They can 
be modeled by AADL modes. System components may encounter failures that cause them to go 
from an error-free state to an error state. These error states are logical states of a system compo-
nent that may propagate to other system components. Component faults, error states, and error 
propagation can be by modeled by AADL error models. Both modes and error states, then, repre-
sent states of a system.  

The difference between modes and error states lies primarily in their semantics. Error states result 
from occurrences of error events (e.g., faults or repair events), while modes represent operational 
states that may be totally independent of error events. Error states are not necessarily observable, 
but modes are always observable. For example, an error state might represent a component that is 
in an unobserved erroneous state because it has not yet failed at its interface.  

Although they are different, modes in operational systems and error states in error models can 
affect each other. The embedded software system can observe component error states and might 
change to a different fault tolerant configuration in response. Consequently, a logical system state 
(the error state) is translated into an operational system mode. Similarly, changes in the opera-
tional system mode might affect logical error states (e.g., a repair action in the embedded software 
might cause a component to re-enter an error-free state). 

In this section, we discuss the interaction between operational system modes, represented by 
AADL modes, and logical error states, represented by error models.  

• In Section 7.1, we discuss the use of AADL modes and mode transitions to represent the 
dynamics of operational modes. 

• In Section 7.2, we describe how changes in the error model of a system can be translated 
into events that the operational system can respond to.  

• In Section 7.3, we discuss how the logic behind mode transitions, in particular logic that ad-
dresses fault tolerance, can be expressed in AADL.  

• In Section 7.4, we present mechanisms that allow error models to reflect changes in opera-
tional states (i.e., respond to mode changes). 

• In Section 7.5, we give some modeling examples to illustrate the interaction between modes 
and error states in actual systems. 
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7.1 MODELING OF OPERATIONAL MODES 

Actual systems can be represented according to one of these scenarios: 

1. Operational modes in phased-mission systems model configurations representative of differ-
ent phases in a mission. For example, in the case of an aircraft model, one may distinguish 
between the takeoff, cruise, and landing phases. During each of these phases, the system 
would have a particular configuration with active components and connections. The fault 
management approach may be different during each phase. 

2. Fault-tolerance modes model configurations due to the fault-tolerance strategy chosen for the 
system or for particular parts of the system. For example, a fault-tolerant duplex system may 
have two operational modes corresponding to (a) replica no. 1 delivers the service, replica 
no. 2 monitors replica no.1; and (b) replica no. 2 delivers the service, replica no. 1 monitors 
replica no.2. 

7.1.1 Modes, Mode Transitions, and Events 

A mode is a visible operational state of an AADL component. A component can have mode-
specific properties and configurations of subcomponents and connections that are active in spe-
cific modes. Although components and connections can be part of more than one mode, they are 
in only one mode—the current mode—at any one time. Mode transitions represent dynamic op-
erational behavior (i.e., switching between configurations and changes to system characteristics 
expressed through property values).  

Modes and mode transitions can be specified for a component anywhere in the system hierarchy. 
Components with modes may contain subcomponents with modes. The AADL defines a system 
operation mode to be the set of current mode states of all modal components in the system. 

Mode transitions are triggered by events from outgoing (out or in out) event ports of subcom-
ponents, by events from incoming (in or in out) event ports of the component with the mode 

transition, or by events raised local to the component. The state machine formed by modes and 
mode transitions in a component implementation is deterministic (i.e., from a given mode, only 
one mode transition is triggered at a time). 

7.1.2 Application of Modes and Events 

Mission-phased operational modes may apply to the whole embedded system or they may apply 
to a particular subsystem. This scope of applicability determines which components in the system 
hierarchy should be declared with modes. For each mode, this system component can be config-
ured with different subsets of active subcomponents and connections and with variants of the 
same subcomponent. The subcomponents themselves may be modal; their mode selection can be 
represented either by different implementation variants or by mode declarations. Their selection is 
driven by events that originate from a system component that acts as operational mode manager. 

Usually, phased-mission systems also need modes to represent fault-tolerance mechanisms. In 
AADL, a mode cannot have nested modes itself, but a component with modes can also have sub-
components that have modes. If the fault tolerant mode is reflected in a redundancy pattern [Feiler 
2004], the application of this redundancy pattern to a system component with mission-phased op-
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erational modes results in nested components. The redundancy component contains the fault tol-
erance modes, while the redundant application component contains the operational modes. An 
example of a redundancy pattern is shown in Figure 12. Any events that are passed into the appli-
cation component to control its operational mode must be routed through the redundancy pattern 
to the redundant copies. 

 

system implementation PrimaryBackupPattern.impl  
 subcomponents 
  primary: system sys in modes (Primarymode); 
  backup: system sys in modes (Backupmode); 
 connections 
  inprimary: data port insignal -> 
primary.insignal in modes (Primarymode); 
  inbackup: data port insignal -> backup.insignal 
in modes (Backupmode); 
  outprimary: data port primary.outsignal -> 
outsignal in modes (Primarymode); 
  outbackup: data port backup.outsignal -> 
outsignal in modes (Backupmode); 
 modes 
  Primarymode: initial mode; 
  Backupmode: mode; 
 end PrimaryBackupPattern.impl; 

Figure 12: Dual Redundancy Pattern 

Notice that events going through a named port cannot be distinguished because they do not have 
names or other identifying data. Thus, any event going through a port that is specified in a mode 
transition will trigger that mode transition. By using separate event ports, you can specify that 
different events can trigger different mode transitions. 

If a mode transition lists multiple event ports, an event through any of the ports can trigger the 
transition. For mode transitions that name multiple event ports as their trigger condition, logic 
represented by the or operator is assumed. For dependability analyses, it is desirable to specify 
transition logic other than or logic. We will show in Section 7.2.1 how mode transition logic can 

be described through the Guard_Transition property of the error model. 

7.2 GENERATION OF SYSTEM EVENTS 

The AADL allows us to model logical error states separately from the operational mode of the 
running application. It also establishes a connection between the logical error states and the opera-
tional mode by using Guard_Event properties to translate logical error states into actions in the 

form of port events on the running system. Those events can initiate the dispatch of an aperiodic 
or sporadic thread and trigger a mode transition.  

7.2.1 Role of a Guard_Event Property 

The Guard_Event property links the error states and error propagations in the error model to 

port events in the AADL architecture model. It is intended to map error conditions into architec-
tural events (i.e., to specify that an architectural event is raised depending on the error model log-
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ic). In particular, this property can be used to specify that a “real” event is raised in the system 
according to error conditions detected by a voting protocol implemented in the component. 

7.2.2 Guard_Event Property Application 

A Guard_Event property is associated with an outgoing (out or in out) event port of the 

component that declares the property. The generated event will be sent out of the component 
through that port. A Guard_Event can also specify that an event is raised local to the compo-

nent (e.g., an event that control mode transitions of the component itself.3) Such an event is not 
available outside the component, unless explicitly connected to an outgoing event port. 

7.2.3 How to Use Guard_Event Properties 

A Guard_Event property specifies that an event is generated through an outgoing event port. 

The outgoing event port can be named in a mode transition of the enclosing component, or the 
event can be routed to another component through an event connection. The ultimate destination 
of this event connection can be a thread event port that results in the dispatch of the thread, or it 
can be a mode transition if the event port is named in a mode transition. Consequently, a dispatch 
or mode transition will occur when a specific condition is detected in the system error model. 

Table 29 shows how a Guard_Event property can be used. The example declares a system hav-
ing two in data ports, Sensor1 and Sensor2, and one out event port, SensorsFailed.  

Table 29: Guard_Event Property 

system computer 
features 
Sensor1: in data port; 
Sensor2: in data port; 
SensorsFailed: out event port; 
end computer; 
 
system implementation computer.personal 
annex Error_Model {** 
Model => My_ErrorModels::dependent.general;  
Guard_Event =>  
  Sensor1[FailedVisible] and Sensor2[FailedVisible] 
 applies to SensorsFailed; 
**}; 
end computer.personal; 

The error model annex subclause associated with the system’s implementation contains the error 
model dependent.general and a Guard_Event property declaration applying to the out 
event port SensorsFailed. The Guard_Event property specifies that an event will be 
raised and sent out of the component through the port SensorsFailed if error propagations 
FailedVisible arrive through Sensor1 and Sensor2. The propagations referred to in the 

 

3 The ability to reference local events is addressed in errata to the AADL standard. 
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logic expression are declared as in out propagations in the type of the error model 
(dependent.general) of the system and named as out error propagation action in an error 

state transition or have a Guard_Out rule. 

The event triggered by the Guard_Event property through the port SensorsFailed can be 

passed through an event port connection to other components. This event may then trigger a 
thread dispatch or mode transition, or it may be observed as an “alarm” event in the vent port 
queue of a health monitoring thread. In other words, the observation of FailedVisible 

propagations arriving at the computer system may cause thread dispatches or mode transitions, or 
those propagations may become an observable events in the application itself.  

Notice that the AADL architecture model in Table 29 is the same as the one shown in Figure 9 on 
page 38 for Guard_Out properties. The difference between Guard_Out and Guard_Event 
properties lies in the type of event generated. In the case of the Guard_Out property, an (error) 
propagation is generated; for the Guard_Event property, a port event is generated. 

A separate Guard_Event property must be defined for each event port and each event local to 
the component. The applies to clause identifies the event port by name and a local event by 
self.eventname. Note that local events do not have to be explicitly declared; they are just 

named in mode transitions. Local events can be connected to outgoing event ports by an event 
port connection whose source is self.eventname, making them externally visible. 

The condition under which a port event occurs is specified by a logic expression that can refer to 

• component features and outgoing propagations or error states in the error model of the con-
nection through the features  

− If the connection does not have an error mode, the outgoing propagation or error state in 
the error model of the connected component(s) is referenced. 

• error states declared in the error model associated with the component whose  implementa-
tion contains the Guard_Event property 

− The special keyword self is used in this case (i.e., self[ErrorFree]). 

Error propagations or error states can be listed in a bracketed list following the component feature 
name or the keyword self. If no bracketed list is given, it is assumed that the initial state of the 

connected component is referred to. 

The logic expression can contain the following logic operators: not, and, or, ormore, 
orless. The not operator has the highest precedence, followed by the and operator. The other 

operators have equal precedence and are evaluated from left to right except where parentheses 
specify otherwise. A numeric literal appearing in an ormore or orless operator must be a 

positive integer. 

Whenever any error propagation into a component error model occurs, every Guard_Event 
property associated with any of its out event ports is evaluated. If the associated expression eva-

luates to TRUE, the port event is raised. Either zero or one port event will be raised for each error 
propagation, depending on the value of the Guard_Event property at the time the error is prop-

agated. For the purposes of error modeling and analysis, the latency between the error propagation 
and the raising of any resulting events is zero. If more than one Guard_Event expression eva-
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luates to TRUE when an error propagation occurs, there is no defined order in which the events 
are considered to occur or be processed. 

If the predefined standard out event data port Error (defined in Section 5.3 of the core AADL 

standard4) for a thread has a connection declared with that port as its source and if the thread has 
an associated error model, a Guard_Event error property association must be specified for the 

predeclared error port. 

If an event port is an ultimate source for an event connection and there is no Guard_Event 

property associated with that event port, it should be assumed that an event could be raised for 
that port in any state relevant to the modeling and analysis scenario. 

7.3 MODE TRANSITION LOGIC 

AADL mode transition declarations name one or more event ports whose events can trigger a 
mode transition. By default, an event on any of the named ports can trigger the mode transition. 
When modeling fault tolerance, it is desirable to model the specific conditions under which the 
mode transition occurs, such as the use of a voting protocol.  

7.3.1 Role of a Guard_Transition Property 

The Guard_Transition property specifies the conditions under which a mode transition oc-

curs. This property can be used as an advanced decision-making mechanism that might model 
voting protocols affecting the mode configuration of a component.  

The Guard_Transition property supports  

• Specification of conditions other than the default or condition on port events arriving at the 
named event ports of a mode transition. We refer to this as Event-Based Mode Transition 
Condition. 

• Specification of conditions in terms of error propagations and error states in the error model 
under which a mode transition is expected to occur.  We refer to this as Error-Based Mode 
Transition Condition. 

We discuss each of these two scenarios in turn. 

 

4  The SAE AADL standard is available from the SAE as document AS5506. It can be ordered using this Web ad-
dress: http://www.sae.org/servlets/productDetail?PROD_TYP=STD&PROD_CD=AS5506. 

http://www.sae.org/servlets/productDetail?PROD_TYP=STD&PROD_CD=AS5506
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7.3.2 How to Specify Event-Based Mode Transition Conditions 

Table 30 shows how a Guard_Transition property can be used as mode transition condition 
on the port events named in a mode transition. The example declares a system computer having 
two in event ports, Sensor1 and Sensor2. The system’s implementation declares modes, 

System_OK and Sensors_Fail, and a mode transition that names both event ports Sensor1 
and Sensor2. The Guard_Transition specifies that if the system is in mode System_OK, 
it will move to mode Sensors_Fail if port events arrive through ports Sensor1 and 
Sensor2. This overrides the default mode transition condition of Sensor1 or Sensor2. 

Table 30: Event-Based Mode Transition Condition 

system computer 
features 
Sensor1, Sensor2: in event port; 
end computer; 
 
system implementation computer.personal 
modes 
System_OK: initial mode; 
Sensors_Fail: mode; 
BecomeFailed: System_OK-[Sensor1, Sensor2] -> Sensors_Fail; 
annex Error_Model {** 
Guard_Transition =>  
 (Sensor1 and Sensor2) applies to BecomeFailed; 
**}; 
end computer.personal; 

The error model annex subclause associated with the system implementation contains a 
Guard_Transition property declaration for mode transition BecomeFailed. The 
Guard_Transition properties specify that the mode transition occurs only when port events 
arrive through ports Sensor1 and Sensor2.  

Port events can have one of three sources.  

1. generated using Guard_Event properties on the out event ports that are at the origin of 
connections to ports Sensor1 and Sensor2  

In this case, the port event represents a port event that reports an error model state of the ori-
ginator.   

2. originated by an application thread that raises a port event through a Raise_Event system 

call   

In this case, the port event may represent application logic or an exceptional condition that 
the thread wants to report.   

3. originated by a processor to which an application thread is bound   

In this case, the thread may have decided to pass this event on to the receiving component. 
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A separate Guard_Transition property must be defined for each mode transition. The mode 
transition is identified by name5 in the applies to clause. The condition under which a port 

event occurs is specified by a logic expression that can refer to 

• outgoing subcomponent event ports 

• incoming features of the component for which the Guard_Transition is declared 

The optional outgoing propagations or error states, which are specified in square brackets after the 
event port name, are not used when specifying mode transition conditions. 

The logic expression can contain the following logic operators: not, and, or, ormore, 
orless. The not operator has the highest precedence, followed by the and operator. The other 

operators have equal precedence and are evaluated from left to right except where parentheses 
specify otherwise. A numeric literal appearing in an ormore or orless operator must be a 

positive integer. 

Each time a port event occurs that might cause a mode transition, the logic expression of a 
Guard_Transition property that names event ports is evaluated. If the expression evaluates 

to TRUE, any mode transition labeled with that event port will occur. 

7.3.3 How to Specify Error-Based Mode Transition Conditions 

This section illustrates the use of Guard_Event for specifying error-based mode transition con-

ditions. 

A Guard_Transition property may specify a condition in terms of error states and error 

propagations under which a mode transition is to occur. This may result in the 
Guard_Transition condition having the value TRUE, even if a port event named in the 

mode transition has not been raised. This inconsistency is referred to in the Error Model Annex 
standard as “false mode transition” [SAE-AS5506/1 2006, Annex E.3.4.3 (10)].  To avoid this 
inconsistency, we recommend that the error state and propagation-based condition for a mode 
transition be specified through a Guard_Event.   

Table 31 shows how a Guard_Event property can be used to specify an error-based mode tran-
sition condition. The example declares a system computer having two in data ports, Sensor1 

and Sensor2. The system’s implementation declares modes, System_OK and 
Sensors_Fail, and a mode transition that names both event ports Sensor1 and Sensor2. 
The Guard_Event specifies that if the system is in mode System_OK, it will move to mode 
Sensors_Fail if FailedVisible is propagated through port Sensor1 and Sensor2 
(i.e., both originating components are in the Failed error state and this can be observed by the 

recipient).  

 

5  Erratum to the AADL standard provides the ability to name mode transitions. 
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Table 31: Error-Based Mode Transition Condition 

system computer 
features 
Sensor1, Sensor2: in data port; 
end computer; 
 
system implementation computer.personal 
modes 
System_OK: initial mode; 
Sensors_Fail: mode; 
System_OK-[self.BeFailed] -> Sensors_Fail; 
annex Error_Model {** 
Guard_Event =>  
 (Sensor1[FailedVisible] and Sensor2[FailedVisible]) 
 applies to self.BeFailed; 
**}; 
end computer.personal; 

7.4 MODE TRANSITIONS AND ERROR MODELS 

AADL components of a system can be either active or inactive in a particular mode. For certain 
analyses, it may be interesting to consider distinct behaviors in the presence of faults for inactive 
and active components. To this end, the AADL Error Model Annex standard allows you to de-
clare (optionally) an initial inactive state, in addition to the initial state, in an error model type. 
This initial inactive state is the initial state of the component if the component is inactive in the 
initial mode of the system. If no initial inactive state is declared, the initial state is used even if the 
component is initially inactive.  

When the system configuration changes (i.e., when the component is activated or deactivated), the 
error model characteristics can change. This mode change can be in the error model. An error 
state transition labeled activate occurs when the component is activated at a mode transition 
while an error state transition labeled deactivate occurs when the component is deactivated at 

a mode transition. If a component is activated or deactivated at a mode transition but no transi-
tions from the current state are labeled respectively activate and deactivate, its state does 

not change. 

Table 32 shows an error model that declares an initial inactive state. It is an error-free state, just 
like the initial (active) state. We make the assumption that an inactive component does not fail. A 
component that is error-free when activated at a mode transition moves to an active error-free 
state and may fail while the component is active. An active failed component may be repaired to 
regain its active error-free state. If a failed component is deactivated, it moves directly to an inac-
tive error-free state. 
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Table 32: Activate and Deactivate State Transitions 

error model Modal 
features 
ON_ErrorFree: initial error state; 
OFF_ErrorFree: initial inactive error state; 
Failed: error state; 
Fail: error event {Occurrence => poisson lambda}; 
Repair: error event {Occurrence => poisson mu}; 
end Modal; 
 
error model implementation Modal.example 
transitions 
ON_ErrorFree-[deactivate]->OFF_ErrorFree; 
OFF_ErrorFree-[activate]->ON_ErrorFree; 
 
ON_ErrorFree-[Fail]->Failed; 
Failed-[out CorruptedData]->Failed; 
Failed-[Repair]->ON_ErrorFree; 
Failed-[deactivate]->OFF_ErrorFree; 
end Modal.example; 

7.5 AADL MODEL EXAMPLES FOR SYSTEMS WITH MODES 

This section presents a series of example models for systems that have modes and failure behav-
iors. All of the models can be used to drive dependability analyses. They show how the fault-
related information is added to different AADL architecture models and how this fault logic can 
be related to the fault management mechanisms used in the system architecture.  

The examples represent dual redundant systems and self-managing systems. The redundant com-
ponents provide the same service. This service may be responding to server subprogram calls or 
processing a data stream, event stream, or event data stream. Those systems may be complete sys-
tems or may be components of larger systems.  Modes are used to model fault management 
through reconfiguration at runtime. Error models are used to capture the fault behavior. Section 
7.5.1 presents a dual-redundant system in a cold standby setup where the components are able to 
detect faults themselves. Section 7.5.2 presents the same dual-redundant system in a hot standby 
setup. Section 7.5.3 presents a system that observes its own faults and takes corrective actions 
itself (i.e., a self-managing system). Section 7.5.4 presents a dual-redundant system with a moni-
toring component (e.g., a health monitor). Section 7.5.5 presents a dual-redundant system with 
mutually informing components, and Section 7.5.6 presents a dual-redundant system with mutu-
ally observing components. 

7.5.1 Cold Standby of Self-Observing Components 

In this scenario, the component is assumed to be self-observing (i.e., able to report its own error 
states as port events).  The redundant instances of the component reside inside system components 
whose mode determines which component instance and connection is active at a given time.  In 
case of the cold standby pattern, only one component is active in a given mode and only the con-
nections to and from the active component are active in the same mode. The cold standby pattern 
is shown in Figure 13 for a component processing a data port stream. The active component and 
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connections are shown in black, while the inactive component and connections are shown in gray. 
CompP and CompB do not communicate one with the other. The large, round-cornered rectangle 
on the left shows the Primary mode as active mode, in which component CompP is active.  The 
large, round-cornered rectangle on the right it shows the Backup mode with component CompB 
active. 

 

Figure 13:  Cold Standby Pattern 

Figure 14 shows the two modes (Primary and Backup) and an event port for each of the redundant 
components through which the component reports that it is in a failed state. The mode transition 
occurs when the active component reports a failure. In this model, it is assumed that the failure is 
recoverable (i.e., the component can perform its service when reactivated through a mode transi-
tion). 

 

Figure 14: Cold Standby of a Self-Observing Component 
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Table 33 shows a part of the AADL architecture model (textual AADL) and the associated error 
model. A Guard_Event property is associated with the out event port involved in mode transi-

tions. We use the Modal.example error model in this example; it takes into account the fact 

that components get deactivated and activated through mode transitions. 

Table 33: Cold Standby of a Self-Observing Component 

System computer 
features 
Input: in data port; 
Output: out data port; 
IFailed: out event port; 
end computer; 
 
system implementation computer.personal 
annex Error_Model {** 
 Model => Modal.example;  
 Guard_Event => self[Failed] applies to IFailed; 
**}; 
end computer.personal; 
 
system CSBy 
features 
Input: in data port; 
Output: our data port; 
end CSBy; 
 
system implementation CSBy.generic 
subcomponents 
CompP: system computer.personal in modes Primary; 
CompB: system computer.personal in modes Backup; 
connections 
data port Input -> CompP.Input in modes Primary; 
data port CompP.Output -> Output in modes Primary; 
data port Input -> CompB.Input in modes Backup; 
data port CompB.Output -> Output in modes Backup; 
modes 
Primary: initial mode; 
Backup: mode; 
Primary -[CompP.IFailed]-> Backup; 
Backup -[CompB.IFailed]->Primary;  
end CSBy.generic; 

7.5.2 Hot Standby of Self-Observing Components 

In this scenario the component is assumed to be self–observing (i.e., able to report its own error 
states as port events).  The redundant instances of the component reside inside system components 
whose mode determines which component instance and connection is active at a given time.  In 
case of the hot standby pattern, both components are active, but only one component’s output is 
made available as output of the redundant system. The hot standby pattern is shown in Figure 15 
for a component processing a data port stream. The active component and connections are shown 
in black, while the inactive connections are shown in gray. CompP and CompB do not communi-
cate with each other. In the large, round-cornered rectangle on the left, the Primary mode is ac-
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tive, in which component CompP output is sent out through an active connection, while the con-
nection from CompB is inactive. In the large, round-cornered rectangle on the right, the Backup 
mode is active with component CompB output made available through an active connection, while 
the connection from CompP is inactive. 

 

Figure 15:  Hot Standby Pattern 

Figure 16 shows the two modes (Primary and Backup) and two event ports for each of the redun-
dant components. The component reports that it is in an error-free or in a failed state through the 
event ports. The mode transition occurs when one component reports a failure and the other com-
ponent reports that it is error free. In this model, it is assumed that the failure is recoverable (i.e., 
the component can perform its service when reactivated through a mode transition). 

 

Figure 16: Hot Standby of a Self-Observing Component 
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Table 34 shows part of an AADL architecture model and associated error model. Guard_Event 
properties are associated with the out event ports involved in mode transitions. 
Guard_Transition properties define the mode transition condition with respect to the event 

ports and the mode transition specification with respect to the error states. 

Table 34: Hot Standby of a Self-Observing Component 

System computer 
features 
Input: in data port; 
Output: out data port; 
IAmOk: out event port; 
IFailed: out event port; 
end computer; 
 
system implementation computer.personal 
annex Error_Model {** 
 Model => dependent.general;  
 Guard_Event => self [ErrorFree] applies to IAmOk; 
 Guard_Event => self [Failed] applies to IFailed; 
**}; 
end computer.personal; 
 
system CSBy 
features 
Input: in data port; 
Output: our data port; 
end CSBy; 
 
system implementation CSBy.generic 
subcomponents 
CompP: system computer.personal; 
CompB: system computer.personal; 
connections 
data port Input -> CompP.Input; 
data port CompP.Output -> Output; 
data port Input -> CompB.Input; 
data port CompB.Output -> Output in modes Backup; 
modes 
Primary: initial mode; 
Backup: mode; 
ToBackup: Primary -[CompP.IFailed, CompB.IAmOk]-> Backup; 
ToPrimary: Backup -[CompP.IAmOk, CompB.IFailed]-> Primary;  
annex Error_Model {** 
-- mode transition conditions 
 Guard_Transition => CompP.IFailed and CompB.IAmOk  
       applies to ToBackup; 
 Guard_Transition => CompP.IAmOk and CompB.IFailed  
       applies to ToPrimary; 
**}; 
end CSBy.generic; 
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7.5.3 Self-Managing Components 

In this scenario, the focus is on how a component is self managing (i.e., able to manage its own 
mode transitions). In other words, the component has several operational modes and will operate 
in different modes in error-free and error states. This structure differs from the previous two ex-
amples in which a system component was managing its subcomponents.   

Guard_Event properties associated with outgoing event ports of the component are intended to 

report an error state to other components. This design would require that users route the event 
back to an incoming event port of the component to be named in a mode transition. Instead, we 
will associate the Guard_Event with an event local to the component, which is expressed by 
self.eventname. 

We consider the following scenarios of a self-managing component.   

• The component may be a thread (i.e., may cause failure if it is actively executing). The code 
of the thread itself may raise the event by calling on Raise_Event, or the event may be raised 
in one of the called subprograms. This scenario is illustrated on the left in Figure 17. 

• The component may be a higher level system component (e.g., a process or system).  In this 
case, the event may be raised by a subcomponent or the component itself. Where it is raised 
by the component, the event might be raised by the underlying runtime system or may repre-
sent an abstraction for a raised event in a partially specified system model, such as a model 
of major subsystems or partitions. This scenario is illustrated on the right in Figure 17. 

• The fault of an application component may be detected by the execution platform (i.e., a 
processor, on behalf of the application component). This scenario is illustrated in the center 
in Figure 17. 

Figure 17 shows a self-managing thread and system that have two modes. The modes are used to 
represent mode-specific property values, such as mode-specific execution time, and to allow for 
specification of mode-specific configurations of subcomponents and connections. The mode tran-
sition observes events raised by  

• thread and system 

• called subprogram or a subcomponent  

• processor on which the thread executes  

The raising of the event by the component itself is represented by a call to the Raise_Event system 
subprogram or by an event abstraction expressed by self.eventname. The figure also shows 

the thread and system observing an event raised by the processor (e.g., an event that is caused by a 
protected address space violation during the execution of the thread). Notice that the processor 
may report a fault through the exception handling mechanism of the language runtime system of 
the application. In that case, the application code of the thread may handle the exception and de-
cide to raise a port event, as shown on the left. 
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Figure 17:  A Self-Managing Component 

Table 35 shows a part of the AADL architecture model (textual AADL) and the associated error 
model for the self-managing thread and system examples depicted in Figure 17. The mode transi-
tion observes the thread’s own raised events as well as events raised by the processor on which 
the thread executes. The raising of the event by the thread itself is represented by a call to the 
Raise_Event system subprogram. The mode transition refers to it by self.eventname.  The 

Guard_Event property specifies under what conditions this event is raised. Notice that it is not 

required to explicitly specify the Raise_Event call unless its temporal order in the call sequence 
matters.   

The fault may be identified by the subprogram Fcn. In that case, the subprogram call would report 
the event through an event port of the subprogram and the Guard_Event is part of the subpro-

gram declaration. Events raised by the processor to which the thread is bound are named by the 
processor type. The system component follows the same pattern, but it does not include an ex-
plicit Raise_Event call. 
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Table 35: Self-Managing Component 

thread SelfObsT 
features 
Input: in data port; 
Output: out data port; 
end SelfObsT; 
 
thread implementation SelfObsT.personal 
calls 
f: subprogram Fcn; 
IFailed: subprogram Raise_Event; 
connections 
data port Input -> F.Input; 
data port F.Output -> Output; 
modes 
Nominal: initial mode; 
Recovery: mode; 
Nominal-[F.Ifailed, self.IFailed, PPC.PAV]-> Recovery; 
annex Error_Model {** 
    Guard_Event => self[FailedVisible] applies to self.IFailed; 
**}; 
end SelfObsT.personal; 
 
system SelfObs 
features 
Input: in data port; 
Output: out data port; 
end SelfObs; 
 
system implementation SelfObs.personal 
subcomponents 
subsys: system; 
connections 
data port Input -> subsys.Input; 
data port subsys.Output -> Output; 
modes 
Nominal: initial mode; 
Recovery: mode; 
Nominal-[subsys.Ifailed, self.IFailed, PPC.PAV]-> Recovery; 
annex Error_Model {** 
    Guard_Event => self[FailedVisible] applies to self.IFailed; 
**}; 
end SelfObs.personal; 

7.5.4 A Monitoring Component 

In this scenario, we introduce a monitoring component that monitors the output of the component 
to determine whether the active component fails. The system modeled in Figure 18 consists of 
two identical active subcomponents and one monitoring component that makes decisions about 
the two subcomponents based on its observation of the output. Each of the active subcomponents 
can be in sender or receiver mode. In the sender mode, the component provides output, while in 
the receiver mode it is in hot standby (i.e., does processing but sends the output only to the moni-
tor).   
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The Monitor component observes the output of the components. If the output of the active com-
ponent is missing or bad, the monitor initiates a mode transition. If it detects the failure of both 
components, it waits for one of them to become operational and configures it through mode tran-
sition to send its output to other components. The controller initiates mode transitions by means of 
Guard_Event properties associated with its outgoing event ports. 

 

Figure 18: Monitoring Component 

It is not necessary to associate Guard_Transition properties with mode transitions, as each 

mode transition names only one event port. Table 36 shows a part of the AADL architecture mod-
el (textual AADL) and the associated error model.  
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Table 36: Monitoring Component 

System computer 
features 
Output: out data port; 
end computer; 

system implementation computer.impl 
annex Error_Model {** 
 Model => independent.general; 
**}; 
end computer.impl; 

system Monitor 
features 
Output1: in data port; 
Sender1: out event port; 
Output2: in data port; 
Sender2: out event port; 
SenderNone: out event port; 
end Monitor; 

system implementation Monitor.generic 
annex Error_Model {** 
 Model => independent.general; 
 Guard_Event => Output1[FailedVisible] and Output2[ErrorFree] 
    applies to Sender2;  
 Guard_Event => Output2[FailedVisible] and Output1[ErrorFree] 
   applies to Sender1;  
 Guard_Event => Output2[FailedVisible] and Output1[FailedVisible] 
   applies to SenderNone;  
**}; 
end Monitor.generic; 

system MonSys 
features 
Output: out data port; 
end MonSys; 

system implementation MonSys.generic 
subcomponents 
Comp1: system computer.impl; 
Comp2: system computer.impl; 
Monitor: system Monitor.generic; 
connections 
data port Comp1.Output-> Output in modes Comp1Active; 
data port Comp2.Output-> Output in modes Comp2Active; 
data port Comp1.Output->Monitor.Output1; 
data port Comp2.Output->Monitor.Output2; 
Modes 
NoneActive: initial mode; 
Comp1active: Mode; 
Comp2Active: Mode; 
NoneActive –[Monitor.Sender1]-> Comp1Active; 
NoneActive –[Monitor.Sender2]-> Comp2Active; 
Comp2Active –[Monitor.Sender1]-> Comp1Active; 
Comp1Active –[Monitor.Sender2]-> Comp2Active; 
Comp2Active –[Monitor.SenderNone]-> NoneActive; 
Comp1Active –[Monitor.SenderNone]-> NoneActive; 
end MonSys.generic; 
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7.5.5 Mutually Informing Components  

In this scenario, we have two components that inform each other about their state. Each compo-
nent decides whether it should be the active sender and determines whether it has encountered a 
fault or is in a state to operate normally. A component goes into a reboot state to repair itself and 
re-enter a normal operational state. 

The system modeled in Figure 19 consists of two identical subcomponents. Each subcomponent 
can be in one of these modes: sender, receiver, reboot to become sender, or reboot to become re-
ceiver. When a subcomponent is in the sender mode, it provides the service expected from the 
system. If a failure occurs in a component, the component reports that fact to the other component 
as an event IFailed and goes into reboot mode. The other component must switch to sender mode, 
so that the expected service continues to be provided. Once the component has recovered, it tran-
sitions into receiver mode. If the second component fails as well, both components reboot.     

When both components fail, the first one to complete its reboot goes into the sender mode.  Simi-
larly, during startup both components start in reboot and the first one to complete its initialization 
sequence (in this case assumed to be the same as used for reboot) will transition to the sender 
mode, while the second component transitions to receiver mode. The figure shows event ports 
named in mode transitions as dashed lines. It also shows locally raised events as dashed ovals. 
Naming of locally raised events in a mode transition is shown as a label on the mode transition. 

 
Figure 19: Mutually Informing Components 

The logic behind the mode transitions is described in the error model subclause of the component. 
Table 37 shows a part of an AADL architecture model and associated error model. Comp1 and 
Comp2 have the same error model. Locally raised events are shown syntactically as 
self.eventname.  Each locally raised event is also connected to an outgoing event port in 

order to report the event to the companion component. 

The error model subclause contains two sets of declarations. The first is a set of Guard_Event 

declarations to represent under what error model conditions a local event is raised. The second set 
of Guard_Transition declarations that indicate under what port event conditions a mode 

transition occurs. 
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Table 37: Mutually Informing Components 

system computer 
features 
IFailed: out event port; 
IAmOk: out event port; 
HeFailed: in event port; 
HeIsOk: in event port; 
Input: in event data port; 
Output: out event data port; 
end computer; 

system implementation computer.impl 
connections 
event port self.IReboot -> IFailed; 
event port self.IAmOk -> IAmOk; 
modes 
Sender: mode; 
Receiver: mode; 
Reboot: initial mode; 
DoReboot1: Sender-[self.IReboot]->Reboot; 
DoReboot2: Receiver-[ self.IReboot]->Reboot; 
BeSender1: Reboot-[self.IamOk,HeFailed]->Sender; 
BeReceiver: Reboot-[self.IAmOk,HeFailed]->Receiver; 
BeSender2: Receiver-[ self.IAmOk,HeFailed]->Sender; 
annex Error_Model {** 
 Model => dependent.general; 
 Guard_Event => self[ErrorFree] 
   applies to self.IAmOk;  
 Guard_Event => self[Failed] 
  applies to self.IReboot; 
 Guard_Transition => HeFailed and self.IAmOk 
    applies to BeSender1;  
 Guard_Transition => HeFailed and self.IAmOk 
    applies to BeSender2;  
 Guard_Transition => HeIsOk and self.IAmOk 
   applies to BeReceiver;  
 **}; 
end computer.impl; 

system Informers 
features 
Input: in data port; 
Output: out data port; 
end Informers; 

system implementation Informers.generic 
subcomponents 
Comp1: system computer.impl; 
Comp2: system computer.impl; 
connections 
event data port Input -> Comp1.Input; 
event data port Input -> Comp2.Input; 
event data port Comp1.Output -> Output; 
event data port Comp2.Output -> Output; 
event port Comp1.IAmOk -> Comp2.HeIsOk; 
event port Comp1.IFailed -> Comp2.HeFailed; 
event port Comp2.IAmOk -> Comp1.HeIsOk; 
event port Comp2.IFailed -> Comp1.HeFailed; 
end Informers.generic; 
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7.5.6 Mutually Observing Components  

In this scenario, we have two components that observe each other’s output to determine whether 
the other component has failed. Based on this information and its own error state, each component 
decides whether it should be the active sender of output. A component goes into a reboot state to 
repair itself and be able to enter a normal operational state again. Different from the mutually in-
forming component scenario, a component in this scenario does not require the cooperation of the 
other component to report its own error states. Instead lack of output and erroneous output allow 
the observing component to determine that the other component misbehaves. The mutually ob-
serving model is shown in Figure 20. 

 

Figure 20: Mutually Observing Components 

The AADL text description of the mutually observing component patterns is shown in Table 38.  
The model primarily differs in that the conditions for mode transitions are specified as guard 
events on the error propagation from the other component based on the exchange of component 
outputs. 
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Table 38: Mutually Observing Components 

system computer 
features 
Input: in event data port; 
Output: out event data port; 
HisOutput: in event data port; 
end computer; 
 
system implementation computer.impl 
modes 
Sender: mode; 
Receiver: mode; 
Reboot: initial mode; 
DoReboot1: Sender-[self.IFailed]->Reboot; 
DoReboot2: Receiver-[self.IFailed]->Reboot; 
BeSender1: Reboot-[self.IAmSender]->Sender; 
BeReceiver: Reboot-[self.IAmReceiver]->Receiver; 
BeSender2: Receiver-[self.IAmSender]->Sender; 
annex Error_Model {** 
 Model => dependent.general; 
 Guard_Event =>  
  self[Failed] applies to self.IFailed;  
 Guard_Event =>  
   HisData[FailedVisible] and self[ErrorFree] 
    applies to self.IAmSender;  
 Guard_Event =>  
   HisData[ErrorFree] and self[ErrorFree] 
   applies to self.IAmReceiver;  
 **}; 
end computer.impl; 
 
system Observers 
features 
Input: in data port; 
Output: out data port; 
end Observers; 
 
system implementation Observers.generic 
subcomponents 
Comp1: system computer.impl; 
Comp2: system computer.impl; 
connections 
event data port Input -> Comp1.Input; 
event data port Input -> Comp2.Input; 
event data port Comp1.Output -> Output; 
event data port Comp2.Output -> Output; 
event data port Comp1.Output -> Comp2.HisOutput; 
event data port Comp2.Output -> Comp1.HisOutput; 
end Observers.generic; 
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Observations 

• The examples described in Sections 7.5.1 through 7.5.6 illustrate techniques for representing 
management of faults by reconfiguration of the system mode transition. This reconfiguration 
may be achieved by making the component itself modal or by the enclosing the component 
that is taking responsibility for reconfiguring its subcomponents and connections between 
them. 

• Four of the examples (see Sections 7.5.1, 7.5.27.5.5, 7.5.3, and 7.5.5) illustrate the use of 
components that are able to discover their own faults. In contrast, the monitoring component 
and the mutually observing component examples (see sections 7.5.4 and 7.5.6) illustrate that 
component failure may be observed externally by monitoring the component’s output. Bad 
output, no output, and untimely output are examples of observations that allow a monitoring 
component to draw the conclusion that a component has failed. 

• All dual-redundant system examples use the same approach to fault tolerance, namely dual 
redundancy.  Each of them, however, makes different assumptions, uses different tactics, 
and has different impact on the reliability of the system as a whole. For example, cold 
standby (see Section 7.5.1) assumes that the component does not maintain state. Hot standby 
(see Section 7.5.2) allows both components to maintain state independently. A monitoring 
component (see Section 7.5.4) observes output simultaneously with the output being made 
available to other components, resulting in occasional bad data to be passed on.   

• In the mutually informing components example (see Section 7.5.5), the component detects 
its own faults and reports them immediately (Failed state); in the mutually observing 

components example (see Section 7.5.6), the component observes the fault of the other com-
ponent. For mutually observing components, this observation may be delayed relative to the 
occurrence of the fault and is captured by the FailedVisible error propagation. 

• Systems can be modeled at different levels of detail. The monitoring system and the mutu-
ally observing component examples (see Sections 7.5.4 and 7.5.6) explicitly model the oc-
currence of double faults and fault recovery. 

• Error models provide a specification of faults and fault occurrence rates. They also provide 
specifications of desired fault management strategies—expressed in mode transition and 
event guards. 
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8 Modeling Maintenance and Repair 

Maintenance dependencies need to be described when repair facilities are shared between compo-
nents or when the maintenance or repair activity of some components has to be carried out ac-
cording to a given order or a specified strategy (i.e., software can be restarted only if the hardware 
is available). 

Components that are not dependent at the architectural level may become dependent due to the 
maintenance strategy. Thus, the AADL architecture model might need to be adjusted to support 
the description of dependencies related to the maintenance strategy. Because AADL error models 
interact only by propagations through architectural features (i.e., connections or bindings), the 
maintenance dependency between components’ AADL error models must also be supported by 
the AADL architecture model. Consequently, besides the system architecture components, we 
might need to add an AADL architecture model component to describe the maintenance strategy.  

Figure 21 in the area marked a: shows an example of AADL dependability model. In this archi-

tecture, Component 3 and Component 4 do not interact at the AADL architecture level, as there is 
no architecture-based dependency between them. However, if we assume that they share one re-
pairman, the maintenance strategy has to be accounted for in the AADL error model of the sys-
tem. Thus, it is necessary to represent the repairman at the AADL architecture model level, as 
shown in Figure 21 in the area marked b: in order to model explicitly the maintenance depend-

ency between Component 3 and Component 4. 

a: 

 

b:

 

Figure 21: Maintenance Dependency 

For the simplest repair strategy, the error model associated to the repairman should declare two 
error states—one representing a free repairman and the other representing a busy repairman. The 
transitions from one state to the other have to be triggered by propagations coming from the de-
pendent components. If the repairman is busy and a component needs it, the component keeps 
sending the request until the repairman becomes free again. When the repairman is able to start 
repairing a component, the component sends a notification to that component. This error model is 
described in Table 39. 
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Table 39: Error Model for Shared Repairman 

error model SharedRep 
features 
Free: initial error state; 
Busy: error state; 
RepairMe, Repaired: in error propagation; 
StartRepair: out error propagation; 
 {Occurrence => fixed 1}; 
end SharedRep; 
 
error model implementation SharedRep.basic 
transitions 
Free-[in RepairMe]->Busy; 
Busy-[out StartRepair]->Busy; 
Busy-[in Repaired]->Free; 
end SharedRep.basic; 
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9 Analysis Report Information 

AADL architecture models can be enriched with dependability-related information (through error 
annex library and subclause declarations) and subjected to several dependability analyses. You 
need a mechanism to specify the error states and error propagations that are of particular interest 
for an analysis. The AADL Error Model Annex standard specifies a Report property that has to 
be associated to such states and out or in out propagations. The use of this property needs to 

be specified in the context of a specific analysis. For example, for dependability evaluation pur-
poses, the Report property could be associated to up states. Table 40 shows how the Report 

property might be used. 

Table 40: Report Property 

system implementation mySystem.generic 
annex Error_Model {** 
 Model => dependent.general; 
 Report => ErrorFree; 
**}; 
end mySystem.generic; 
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10 Summary 

The Society of Automotive Engineers AADL standard was designed to model embedded systems 
architectures. AADL architecture models can be annotated with information to support a wide 
range of architectural analyses. The AADL Error Model Annex standard defines a standardized 
language extension to the AADL to represent information for dependability analysis. Using the 
annex, you can define reusable error models that consist of  

• a set of error states 

• error state transitions 

• error events and error propagations that trigger error state transitions 

Error models are associated with components and connections and can have component- or con-
nection-specific properties. These properties specify the rate of occurrence of error events and the 
probability of error propagation. 

This report has shown how error models can be used to model various fault tolerance strategies 
through error propagation filtering and masking. It has discussed the interaction between the logi-
cal system states represented by the error model and the operational system modes of the running 
system. It also has illustrated how maintenance and repair activities can be represented in error 
models. 

This report is the first in a series by the Carnegie Mellon® Software Engineering Institute to pro-
vide guidance in architecture modeling and analysis with AADL. Other reports will discuss addi-
tional dependability-related topics—such as fault tree analysis, reliability analysis, and redun-
dancy and health-monitoring patterns to describe fault management support in the operational 
system—as well resource management, security analysis, data integrity, and safety-criticality.  

 

 

®  Carnegie Mellon is registered n the U.S. Patent and Trademark Office by Carnegie Mellon University. 



76 | CMU/SEI-2007-TN-043 

References 

[Arlat 1998] 
Arlat, J.; Blanquart, J.P.; Costes, A.; Crouzet, Y.; Deswarte, Y.; Fabre, J.-C.; Guillermain, H.; 
Kaâniche, M.; Kanoun, K.; Mazet, C.; Powell, D.; Rabéjac, C.; & Thévenod, P. Dependability 
Handbook. Edited by J.-C Laprie. LAAS-CNRS Report 98-346, 1998. 

[Binns 2004] 
Binns, P. & Vestal, S. “Hierarchical Composition and Abstraction in Architecture Models.” 
Workshop on Architectural Design Languages at the 18th IFIP World Computer Congress. Tou-
louse, France, August 27, 2004. http://www.laas.fr/FERIA/SVF/WADL04/slides/CONCORDE2-
27-1100-VESTAL/BinnsVestalADLWorkshop.ppt  

[Feiler 2004] 
Feiler, P. H.; Gluch, D. P.; Hudak, J.; & Lewis, B. A. “Pattern-Based Analysis of an Embedded 
Real-time System Architecture.” Workshop on Architectural Design Languages at the 18th IFIP 
World Computer Congress. Toulouse, France, August 27, 2004. 
http://www.laas.fr/FERIA/SVF/WADL04/slides/CONCORDE2-27-1100-
LEWIS/AADLpatternstoulouse.pdf 

[Feiler 2006] 
Feiler, P. H.; Gluch, D. P.; & Hudak, J. J. The Architecture Analysis & Design Language (AADL): 
An Introduction. (CMU/SEI-2006-TN-011). Pittsburgh, PA: Software Engineering Institute Car-
negie Mellon University, 2006. 
http://www.sei.cmu.edu/publications/documents/06.reports/06tn011.html 

[SAE-ARP4761 1996] 
Society of Automotive Engineers. SAE Standards: ARP4761, Guidelines and Methods for Con-
ducting the Safety Assessment Process on Civil Airborne Systems and Equipment. December 
1996. http://www.sae.org/technical/standards/ARP4761 

[SAE-AS5506 2004] 
Society of Automotive Engineers. SAE Standards: AS5506, Architecture Analysis & Design Lan-
guage (AADL), November 2004. 
http://www.sae.org/servlets/productDetail?PROD_TYP=STD&PROD_CD=AS5506 

[SAE-AS5506/1 2006] 
Society of Automotive Engineers. SAE Standards: AS5506/1, Architecture Analysis & Design 
Language (AADL) Annex Volume 1, June 2006. http://www.sae.org/technical/standards/AS5506/1 

 

http://www.laas.fr/FERIA/SVF/WADL04/slides/CONCORDE2-27-1100-VESTAL/BinnsVestalADLWorkshop.ppt
http://www.laas.fr/FERIA/SVF/WADL04/slides/CONCORDE2-27-1100-VESTAL/BinnsVestalADLWorkshop.ppt
http://www.laas.fr/FERIA/SVF/WADL04/slides/CONCORDE2-27-1100-LEWIS/AADLpatternstoulouse.pdf
http://www.laas.fr/FERIA/SVF/WADL04/slides/CONCORDE2-27-1100-LEWIS/AADLpatternstoulouse.pdf
http://www.sei.cmu.edu/publications/documents/06.reports/06tn011.html
http://www.sae.org/technical/standards/ARP4761
http://www.sae.org/servlets/productDetail?PROD_TYP=STD&PROD_CD=AS5506
http://www.sae.org/technical/standards/AS5506/1


 

 

 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments re-
garding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquar-
ters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office 
of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY 

(Leave Blank) 

2. REPORT DATE 

July 2007 

3. REPORT TYPE AND DATES 
COVERED 

Final 
4. TITLE AND SUBTITLE 

Dependability Modeling with AADL 

5. FUNDING NUMBERS 

FA8721-05-C-0003 
6. AUTHOR(S) 

Peter Feiler and Ana Rugina 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Software Engineering Institute 
Carnegie Mellon University 
Pittsburgh, PA 15213 

8. PERFORMING ORGANIZATION  
REPORT NUMBER 

CMU/SEI-2007-TN-043 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
HQ ESC/XPK 
5 Eglin Street 
Hanscom AFB, MA 01731-2116 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

 

11. SUPPLEMENTARY NOTES 

 
12A DISTRIBUTION/AVAILABILITY STATEMENT 

Unclassified/Unlimited, DTIC, NTIS 

12B DISTRIBUTION CODE 

 
13. ABSTRACT (MAXIMUM 200 WORDS) 

The Society for Automotive Engineers (SAE) recently published an Error Model Annex document (SAE AS-5506/1) to complement the 

SAE Architecture Analysis & Design Language (AADL) standard document (SAE AS5506) with capabilities for dependability modeling. 

The purpose of this report is to (a) explain the capabilities of the Error Model Annex and (b) provide guidance on the use of the AADL 

and the error model in modeling dependability aspects of embedded system architectures. The focus of the guidance is the creation of 

error model libraries and the instantiation of these error models on AADL architecture models. In that context, the report discusses 

modeling of error propagation, error filtering and masking, the interactions between error models and systems with operational modes, 

and modeling of repair activities.  
14. SUBJECT TERMS 

Error model, AADL, architecture analysis and design language, dependability analysis, model-

based engineering 

15. NUMBER OF PAGES 

86 

16. PRICE CODE 
 

17. SECURITY CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 
298-102 

 


	Dependability Modeling with the Architecture Analysis & Design Language(AADL)
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Dependability Modeling with the Error Model Annex
	3 The AADL Architecture Model
	4 Reusable Error Models
	5 System Architectures and Error Models
	6 System Instance Error Models
	7 Operational Modes and Error States
	8 Modeling Maintenance and Repair
	9 Analysis Report Information
	10 Summary
	References


